Research Article
BibTex RIS Cite

Quality assessment of groundwater in Central Nigde (Central Anatolia, Türkiye)

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

This study aims to assess the groundwater quality and usability of the alluvial aquifer where the city center of Niğde is located. Groundwaters were evaluated based on their hydrochemical properties using national and international standards. The water quality was assessed for drinking and domestic use; agricultural irrigation suitability was determined based on Electrical Conductivity (EC), Total Hardness (TH), Sodium Adsorption Ratio (SAR), Sodium Percentage (%Na), Magnesium Ratio (MR), Residual Sodium Carbonate (RSC), Kelly Index (KI), and Permeability Index (PI); while industrial usability was evaluated using the Langelier Saturation Index (LI), Larson-Skold Index (LS), Ryznar Stability Index (RSI), Puckorius Scaling Index (PSI), Aggressiveness Index (AI), Chloride-Sulfate Mass Ratio (CSMR), and mineral saturation indices. The results indicate that the groundwater in the study area is generally suitable for irrigation. However, in terms of drinking and domestic use, contamination was detected due to agricultural activities in the central part of the alluvial aquifer and mixing with geothermal waters in the downstream sections. Despite the low ion content in the groundwater in the recharge zone of the aquifer, it was concluded that the groundwater is not suitable for industrial use due to the low pH and high ion load in the region where the geothermal fluid mixture is active.

Project Number

FEB2016/14-BAGEP ve MMT2020/1-BAGEP

References

  • N. Adimalla, Groundwater quality for drinking and ırrigation purposes and potential health risks assessment: A case study from semi-arid region of south India, Expo Health, 11 (2), 109–123, 2019. https://doi.org/10.1007/S12403-018-0288-8.
  •     E. Union, Groundwater protection in Europe: The new groundwater directive: consolidating the EU regulatory framework, 2009. https://doi.org/10.2779/84304.
  •     P. Li, H. Qian, and J. Wu, Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China, Int J Water Resour Dev, 34 (3), 337–353, 2018. https://doi.org/10.1080/07900627.2018.1443059.
  •     S. Sahu, U. Gogoi, and N. C. Nayak, Groundwater solute chemistry, hydrogeochemical processes and fluoride contamination in phreatic aquifer of Odisha, India, Geoscience Frontiers, vol. 12 (3), 101093, 2021. https://doi.org/10.1016/J.GSF.2020.10.001.
  •     S. Ghosh and M. K. Jha, Evaluating trends in groundwater quality of coastal alluvial aquifers of Eastern India for sustainable groundwater management, Environmental Science and Pollution Research, 31 (29), 42049–42074, 2024. https://doi.org/ 10.1007/S11356-024-33852-3.
  •     WHO, Guidelines for drinking-water quality, 2011.
  •     E. Mazor, Chemical and Isotopic Groundwater Hydrology. CRC Press, 2003.
  •     C. A. J. Appelo and D. Postma, Geochemistry, Groundwater and Pollution. CRC Press, 2013.
  •     J. D. Hem, Study and Interpretation of the Chemical Characteristics of Natural Water. University Press of the Pacific, 2005.
  •   S. Varol, A. Davraz, Ş. Şener, E. Şener, F. Aksever, B. Kırkan and A. Tokgözlü, Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution, J Environ Health Sci Eng, 19 (1), 681–706, 2021. https://doi.org/10.1007/S40201-021-00638-5.
  •   E. D. Sunkari, T. Abangba, A. Ewusi, S. E. K. Tetteh, and E. Ofosu, Hydrogeochemical evolution and assessment of groundwater quality for drinking and irrigation purposes in the Gushegu Municipality and some parts of East Mamprusi District, Ghana, Environ Monit Assess, vol. 195 (1), 1–25, 2023. https://doi. org/10.1007/S10661-022-10731-3.
  •   Ş. Şener, S. Varol ve E. Şener, Akşehir (Konya) Ovası yeraltısuyu kalitesi ve kullanılabilirliğinin belirlenmesi, Journal of Limnology and Freshwater Fisheries Research, 8 (1), 80–91, 2022. https://doi.org/ 10.17216/LIMNOFISH.871731.
  •   B. A. Berhe, M. Çelik, and U. E. Dokuz, Investigation of irrigation water quality of surface and groundwater in the Kütahya plain, Turkey, Bulletin of the Mineral Research and Exploration, (150), 2015. https://doi.org/ 10.19111/bmre.95431.
  •   A. Fırat Ersoy and E. Hatipoğlu Temizel, Karadere Deresi’nin (Araklı-Trabzon) içme ve sulama suyu amaçlı kullanım uygunluğunun incelenmesi, Doğal Afetler ve Çevre Dergisi, 8 (2), 238–249, 2022. https:// doi.org/10.21324/DACD.1005286.
  •   T. P. Maluleke, S. Dube, E. D. Sunkari, and A. A. Ambushe, Assessment of borehole water quality in Nwadzekudzeku village, Giyani, Limpopo Province, South Africa: Implication for potential human health risks, Journal of Trace Elements and Minerals, 11, 100206, 2025. https://doi.org/10.1016/J.JTEMIN.2024 .100206.
  •   F. Gültekin, A. Firat Ersoy, E. Hatipoglu, and S. Celep, Quality assessment of surface and groundwater in Solaklı Basin (Trabzon, Turkey), Bulletin of Engineering Geology and the Environment, 72, (2), 213–224, 2013. https://doi.org/10.1007/s10064-013-04 67-6.
  •   E. D. Sunkari, M. Abu, P. S. Bayowobie, and U. E. Dokuz, Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: Implication for domestic and irrigation purposes, Groundw Sustain Dev, vol. 8, 2019. https://doi.org/10.1016/j.gsd.2019.0 2.002.
  •   A. Lermi and G. Ertan, Hydrochemical and isotopic studies to understand quality problems in groundwater of the Niğde Province, Central Turkey, Environ Earth Sci, 78, (12), 1–32, 2019. https://doi.org/10.1007/S12 665-019-8365-2.
  •   F. Çiner, E. D. Sunkari, and B. A. Şenbaş, Geochemical and multivariate statistical evaluation of trace elements in groundwater of Niğde Municipality, South-Central Turkey: Implications for arsenic contamination and human health risks assessment, Arch Environ Contam Toxicol, 80 (1), 164–182, 2021. https://doi.org/10.1007/S00244-020-00759-2.
  •   U. E. Dokuz, S. Yaşar Korkanç, and M. Korkanç, Niğde kent merkezi alüvyon akiferinin yeraltısuyu kalitesini etkileyen doğal ve antropojenik faktörlerin incelenmesi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1095–1100, 2018. https://doi.org/10.28948/ngumuh.502263.
  •   TSE, Türk Standartları Enstitüsü, Türk İçme Suyu Standartları TS 266 sayılı standart. İnsani tüketim amaçlı sular, Ankara, 2005.
  •   Meteorloji İşleri Genel Müdürlüğü. https://www.mgm.gov.tr.
  •   F. Ballı, M. Sönmez, and A. Lermi, Niğde GD kesiminin jeolojisi ve Niğde fayına ilişkin yeni bulgular, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1180–1185, 2018. https://doi.org/10.28948/ngumuh.502417.
  •   M. Sönmez, F. Aydin, A. Lermi, and S. Oğuz Saka, Niğde Volkanik Kompleksi’nin batı kesiminin jeolojisi ve volkanostratigrafisi (Kapadokya, Orta Anadolu): Keçiboyduran Dağı ve yakın çevresi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1170–1174. 2018. https://doi.org/10.28948/ngu muh.502395.
  •   M. Afşin, Hydrochemical evolution and water quality along the groundwater flow path in the Sandikli plain, Afyon, Turkey, Environmental Geology, 31 (3–4), 221–230, 1997. https://doi.org/10.1007/S0025400501 83.
  •   G. Tayfur, T. Kirer, and A. Baba, Groundwater quality and hydrogeochemical properties of Torbalı Region, İzmir, Turkey, Environ Monit Assess, 146 (1–3), 157–169, 2008. https://doi.org/10.1007/S10661-007-0068-6
  •   A. Baba, G. Yüce, O. Deniz, and D. Y. Uğurluoğlu, Hydrochemical and isotopic composition of Tuzla Geothermal Field (Canakkale-Turkey) and its environmental impacts, Environ Forensics, 10, (2), 144–161, 2009. https://doi.org/10.1080/15275920902 873418.
  •   M. Brehme, T. Scheytt, M. Çelik, and U. E. Dokuz, Hydrochemical characterisation of ground and surface water at Dörtyol/Hatay/Turkey, Environ Earth Sci, 63, (6), 1395–1408, 2011. https://doi.org/10.1007/S12665 -010-0810-1.
  •   B. Abadi Berhe, U. E. Dokuz, and M. Çelik, Assessment of hydrogeochemistry and environmental isotopes of surface and groundwaters in the Kütahya Plain, Turkey, Journal of African Earth Sciences, 134, 230–240, 2017. https://doi.org/10.1016/J.JAFREARS CI.2017.06.015.
  •   G. Okwir, S. Kumar, K. S. Pramod, H. Gao, and K. N. Njau, Conceptualization of groundwater-surface water interaction with evidence from environmental isotopes and hydrogeochemistry in lake Babati Basin in Northern Tanzania, Groundw Sustain Dev, 21, 100940, 2023. https://doi.org/10.1016/J.GSD.2023.100940.
  •   A. M. Piper, A graphic procedure in the geochemical interpretation of water-analyses, Eos, Transactions American Geophysical Union, 25 (6), 914–928, 1944, https://doi.org/ 10.1029/TR025I006P00914.
  •   H. Schoeller, Geochemie des eause souterraines, Rev. Inst. Fr. Petrol, 10, 230–244, 1955.
  •   L. W. M. David Keith Todd, Groundwater hydrology. John Wiley and Sons, 2004.
  •   L. D. Doneen, Water Quality for Irrigated Agriculture In A. Poljakoff-Mayber, J. Gale (eds.) Plants in saline environments, Springer Nature, pp. 56–76, 1975.
  •   K. V Paliwal, Irrigation with Saline Water, no. 3. Stony Brook Foundation, Inc., 1972.
  •   W. P. Kelley, Use of Saline irrigation water, Soil Sci, 95, (6), 385-391, 1963. http://doi.org/10.1097/00010 694-196306000-00003.
  •   T. E. Larson and R. V. Skold, Laboratory studies relating mineral quality of water to corrosion of steel and cast iron, Corrosion, 14 (6), 43–46, 1958. https:// doi.org/10.5006/0010-9312-14.6.43.
  •   R. Gregory, Galvanic corrosion of lead solder in copper pipework, Water and Environment Journal, 4 (2), -112–118, 1990. https://doi.org/10.1111/J.1747-6593.1990. TB01566.X.
  •   P. R. Puckorius and J. M. Brooke, A new practical ındex for calcium carbonate scale prediction in cooling tower systems, Corrosion, 47 (4), 280–284, 1991. https://doi.org/10.5006/1.3585256.
  •   AWWA, Standard for asbestos-cement transmission pipe, for water and other liquids, 67 (8), 462-467, 1975.
  •   J. W. Ryznar, A new index for determining amount of calcium carbonate scale formed by a water, Journal AWWA, 36, (4), 472–483, 1944. https://doi.org/ 10.1002/J.1551-8833.1944.TB20016.X.
  •   W. F. Langelier, The analytical control of anti-corrosion water treatment, J Am Water Works Assoc, 28 (10), 1500–1521, 1936. https://doi.org/10.1002/J.15 51-8833.1936.TB13785.X.
  •   S. Yıldız and C. B. Karakuş, Estimation of irrigation water quality index with development of an optimum model: a case study, Environ Dev Sustain, 22 (5), 4771–4786, 2020. https://doi.org/10.1007/S10668-01 9-00405-5.
  •   S. Medhi, R. Choudhury, P. Sharma, and B. B. Sharma, Assessment of groundwater quality for irrigation purpose in aquifers of the Upper Brahmaputra floodplains of Assam, India, Environ Monit Assess, 96 (11), 1023, 2024. https://doi.org/10.1007/S10661-024-13150-8.
  •   H. M. Ragunath, Ground Water. New Delhi: Wiley Eastern Ltd., 1987.
  •   A. K. Dandapat, P. K. Panda, S. Sankalp, and M. Jothimani, Integrated assessment of groundwater quality for sustainable irrigation in drought-prone central districts of Odisha, India, Discover Sustainability, 5, (1), 1–19, 2024. https://doi.org/10. 1007/S43621-024-00443-8.
  •   F. M. Eaton, Significance of carbonates in irrigation waters, Soil Sci, 69 (2), 1950. https://doi.org/10.10 97/00010694-195002000-00004.
  •   C. N. Durfor, E. Becker, and U. S. G. P. Office, Public Water Supplies of The 100 Largest Cities of the United States, Washington, D.C., 1964.
  •   W. F. Langelier, The Analytical Control of Anti-Corrosion Water Treatment, J Am Water Works Assoc, 28 (10), 1500–1521, 1936. https://doi.org/10.1002/J. 1551-8833.1936.TB13785.X.
  •   J. W. Ryznar, A new index for determining amount of calcium carbonate scale formed by a water, J Am Water Works Assoc, 36 (4), 472–483, 1944. https://doi.org /10.1002/J.1551-8833.1944.TB20016.X.
  •   T. E. Larson and R. V. Skold, Laboratory studies relating mineral quality of water to corrosion of steel and cast iron, Corrosion, 14 (6), 43–46, 1958. https:// doi.org/10.5006/0010-9312-14.6.43.
  •   C. N. Sawyer, Chemistry for Sanitary Engineers, 2nd ed. New York: McGraw-Hill, 1968.
  •   M. Edwards and S. Triantafyllidou, Chloride-to-sulfate mass ratio and lead leaching to water, J Am Water Works Assoc, 99 (7), 96–109, 2007. https://doi.org /10.1002/J.1551-8833.2007.TB07984.X.
  •   P. R. Roberge, Corrosion Inspection and Monitoring, John Wiley and Sons, 2007.
  •   J. N. Butler, Aquatic chemistry: An introduction emphasizing chemical equilibria in Natural Waters (Stumm, Werner), J Chem Educ, 48 (12), A779, 1971. https://doi.org/10.1021/ED048PA779.1.
  •   U. E. Dokuz, M. Çelik, Y. Kağan Kadıoğlu, M. Brehme, and H. Engin, Geothermal Evaluation of the Bayramhacılı and Tekgöz-Çiftgöz area, Central Anatolia, Turkey by a New Conceptual Reservoir Model. World Geothermal Congress 2015.

Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

Bu çalışmanın amacı Niğde kent merkezinin üzerinde yer aldığı alüvyon akiferin yeraltısuyu kalitesinin ve kullanım olanaklarının belirlenmesidir. Yapılan çalışmada, yeraltısuları ulusal ve uluslararası standartlar yardımıyla içme ve kullanma suyu; Elektriksel İletkenlik (EC), Toplam Sertlik (TH); Sodyum Adsorbsiyon Oranı (SAR); Sodyum Yüzdesi (%Na); Magnezyum Oranı (MR); Kalıntı Sodyum Karbonat (RSC); Kelly İndisi (KI), Permeabilite İndisi (PI) yardımıyla tarımsal sulama suyu; Langier Doygunluk İndisi (LI), Larson-Skold İndisi (LS), Ryznar Stabilite İndisi (RSI), Puckorius Kabuklaşma İndisi (PSI), Agresiflik İndisi (AI), Klorür Sülfat Kütle Oranı (CSMR) ve mineral doygunluk indisleri yardımıyla da endüstriyel amaçlı kullanma suyu bakımından değerlendirilmiştir. Çalışma alanındaki suların genel olarak sulamaya uygun kalitede sular olduğu, içme-kullanma suyu olarak ise alüvyonun orta kısmında tarımsal kirlilik, mansap kısmına doğru jeotermal sularla karışım sonucu kirlilik saptanmıştır. Akiferin beslenme bölgesinde yeraltısuyunda düşük iyon içeriğine rağmen, jeotermal akışkan karışımın etkin olduğu bölgede düşük pH ve yüksek iyon yükü nedeniyle yeraltısularının endüstriyel kullanıma uygun olmadığı sonucuna varılmıştır.

Supporting Institution

Niğde Ömer Halisdemir Üniversitesi

Project Number

FEB2016/14-BAGEP ve MMT2020/1-BAGEP

Thanks

Bu çalışma FEB2016/14-BAGEP ve MMT2020/1-BAGEP no’lu projeler kapsamında Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Yazarlar Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne teşekkür eder.

References

  • N. Adimalla, Groundwater quality for drinking and ırrigation purposes and potential health risks assessment: A case study from semi-arid region of south India, Expo Health, 11 (2), 109–123, 2019. https://doi.org/10.1007/S12403-018-0288-8.
  •     E. Union, Groundwater protection in Europe: The new groundwater directive: consolidating the EU regulatory framework, 2009. https://doi.org/10.2779/84304.
  •     P. Li, H. Qian, and J. Wu, Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China, Int J Water Resour Dev, 34 (3), 337–353, 2018. https://doi.org/10.1080/07900627.2018.1443059.
  •     S. Sahu, U. Gogoi, and N. C. Nayak, Groundwater solute chemistry, hydrogeochemical processes and fluoride contamination in phreatic aquifer of Odisha, India, Geoscience Frontiers, vol. 12 (3), 101093, 2021. https://doi.org/10.1016/J.GSF.2020.10.001.
  •     S. Ghosh and M. K. Jha, Evaluating trends in groundwater quality of coastal alluvial aquifers of Eastern India for sustainable groundwater management, Environmental Science and Pollution Research, 31 (29), 42049–42074, 2024. https://doi.org/ 10.1007/S11356-024-33852-3.
  •     WHO, Guidelines for drinking-water quality, 2011.
  •     E. Mazor, Chemical and Isotopic Groundwater Hydrology. CRC Press, 2003.
  •     C. A. J. Appelo and D. Postma, Geochemistry, Groundwater and Pollution. CRC Press, 2013.
  •     J. D. Hem, Study and Interpretation of the Chemical Characteristics of Natural Water. University Press of the Pacific, 2005.
  •   S. Varol, A. Davraz, Ş. Şener, E. Şener, F. Aksever, B. Kırkan and A. Tokgözlü, Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution, J Environ Health Sci Eng, 19 (1), 681–706, 2021. https://doi.org/10.1007/S40201-021-00638-5.
  •   E. D. Sunkari, T. Abangba, A. Ewusi, S. E. K. Tetteh, and E. Ofosu, Hydrogeochemical evolution and assessment of groundwater quality for drinking and irrigation purposes in the Gushegu Municipality and some parts of East Mamprusi District, Ghana, Environ Monit Assess, vol. 195 (1), 1–25, 2023. https://doi. org/10.1007/S10661-022-10731-3.
  •   Ş. Şener, S. Varol ve E. Şener, Akşehir (Konya) Ovası yeraltısuyu kalitesi ve kullanılabilirliğinin belirlenmesi, Journal of Limnology and Freshwater Fisheries Research, 8 (1), 80–91, 2022. https://doi.org/ 10.17216/LIMNOFISH.871731.
  •   B. A. Berhe, M. Çelik, and U. E. Dokuz, Investigation of irrigation water quality of surface and groundwater in the Kütahya plain, Turkey, Bulletin of the Mineral Research and Exploration, (150), 2015. https://doi.org/ 10.19111/bmre.95431.
  •   A. Fırat Ersoy and E. Hatipoğlu Temizel, Karadere Deresi’nin (Araklı-Trabzon) içme ve sulama suyu amaçlı kullanım uygunluğunun incelenmesi, Doğal Afetler ve Çevre Dergisi, 8 (2), 238–249, 2022. https:// doi.org/10.21324/DACD.1005286.
  •   T. P. Maluleke, S. Dube, E. D. Sunkari, and A. A. Ambushe, Assessment of borehole water quality in Nwadzekudzeku village, Giyani, Limpopo Province, South Africa: Implication for potential human health risks, Journal of Trace Elements and Minerals, 11, 100206, 2025. https://doi.org/10.1016/J.JTEMIN.2024 .100206.
  •   F. Gültekin, A. Firat Ersoy, E. Hatipoglu, and S. Celep, Quality assessment of surface and groundwater in Solaklı Basin (Trabzon, Turkey), Bulletin of Engineering Geology and the Environment, 72, (2), 213–224, 2013. https://doi.org/10.1007/s10064-013-04 67-6.
  •   E. D. Sunkari, M. Abu, P. S. Bayowobie, and U. E. Dokuz, Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: Implication for domestic and irrigation purposes, Groundw Sustain Dev, vol. 8, 2019. https://doi.org/10.1016/j.gsd.2019.0 2.002.
  •   A. Lermi and G. Ertan, Hydrochemical and isotopic studies to understand quality problems in groundwater of the Niğde Province, Central Turkey, Environ Earth Sci, 78, (12), 1–32, 2019. https://doi.org/10.1007/S12 665-019-8365-2.
  •   F. Çiner, E. D. Sunkari, and B. A. Şenbaş, Geochemical and multivariate statistical evaluation of trace elements in groundwater of Niğde Municipality, South-Central Turkey: Implications for arsenic contamination and human health risks assessment, Arch Environ Contam Toxicol, 80 (1), 164–182, 2021. https://doi.org/10.1007/S00244-020-00759-2.
  •   U. E. Dokuz, S. Yaşar Korkanç, and M. Korkanç, Niğde kent merkezi alüvyon akiferinin yeraltısuyu kalitesini etkileyen doğal ve antropojenik faktörlerin incelenmesi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1095–1100, 2018. https://doi.org/10.28948/ngumuh.502263.
  •   TSE, Türk Standartları Enstitüsü, Türk İçme Suyu Standartları TS 266 sayılı standart. İnsani tüketim amaçlı sular, Ankara, 2005.
  •   Meteorloji İşleri Genel Müdürlüğü. https://www.mgm.gov.tr.
  •   F. Ballı, M. Sönmez, and A. Lermi, Niğde GD kesiminin jeolojisi ve Niğde fayına ilişkin yeni bulgular, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1180–1185, 2018. https://doi.org/10.28948/ngumuh.502417.
  •   M. Sönmez, F. Aydin, A. Lermi, and S. Oğuz Saka, Niğde Volkanik Kompleksi’nin batı kesiminin jeolojisi ve volkanostratigrafisi (Kapadokya, Orta Anadolu): Keçiboyduran Dağı ve yakın çevresi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1170–1174. 2018. https://doi.org/10.28948/ngu muh.502395.
  •   M. Afşin, Hydrochemical evolution and water quality along the groundwater flow path in the Sandikli plain, Afyon, Turkey, Environmental Geology, 31 (3–4), 221–230, 1997. https://doi.org/10.1007/S0025400501 83.
  •   G. Tayfur, T. Kirer, and A. Baba, Groundwater quality and hydrogeochemical properties of Torbalı Region, İzmir, Turkey, Environ Monit Assess, 146 (1–3), 157–169, 2008. https://doi.org/10.1007/S10661-007-0068-6
  •   A. Baba, G. Yüce, O. Deniz, and D. Y. Uğurluoğlu, Hydrochemical and isotopic composition of Tuzla Geothermal Field (Canakkale-Turkey) and its environmental impacts, Environ Forensics, 10, (2), 144–161, 2009. https://doi.org/10.1080/15275920902 873418.
  •   M. Brehme, T. Scheytt, M. Çelik, and U. E. Dokuz, Hydrochemical characterisation of ground and surface water at Dörtyol/Hatay/Turkey, Environ Earth Sci, 63, (6), 1395–1408, 2011. https://doi.org/10.1007/S12665 -010-0810-1.
  •   B. Abadi Berhe, U. E. Dokuz, and M. Çelik, Assessment of hydrogeochemistry and environmental isotopes of surface and groundwaters in the Kütahya Plain, Turkey, Journal of African Earth Sciences, 134, 230–240, 2017. https://doi.org/10.1016/J.JAFREARS CI.2017.06.015.
  •   G. Okwir, S. Kumar, K. S. Pramod, H. Gao, and K. N. Njau, Conceptualization of groundwater-surface water interaction with evidence from environmental isotopes and hydrogeochemistry in lake Babati Basin in Northern Tanzania, Groundw Sustain Dev, 21, 100940, 2023. https://doi.org/10.1016/J.GSD.2023.100940.
  •   A. M. Piper, A graphic procedure in the geochemical interpretation of water-analyses, Eos, Transactions American Geophysical Union, 25 (6), 914–928, 1944, https://doi.org/ 10.1029/TR025I006P00914.
  •   H. Schoeller, Geochemie des eause souterraines, Rev. Inst. Fr. Petrol, 10, 230–244, 1955.
  •   L. W. M. David Keith Todd, Groundwater hydrology. John Wiley and Sons, 2004.
  •   L. D. Doneen, Water Quality for Irrigated Agriculture In A. Poljakoff-Mayber, J. Gale (eds.) Plants in saline environments, Springer Nature, pp. 56–76, 1975.
  •   K. V Paliwal, Irrigation with Saline Water, no. 3. Stony Brook Foundation, Inc., 1972.
  •   W. P. Kelley, Use of Saline irrigation water, Soil Sci, 95, (6), 385-391, 1963. http://doi.org/10.1097/00010 694-196306000-00003.
  •   T. E. Larson and R. V. Skold, Laboratory studies relating mineral quality of water to corrosion of steel and cast iron, Corrosion, 14 (6), 43–46, 1958. https:// doi.org/10.5006/0010-9312-14.6.43.
  •   R. Gregory, Galvanic corrosion of lead solder in copper pipework, Water and Environment Journal, 4 (2), -112–118, 1990. https://doi.org/10.1111/J.1747-6593.1990. TB01566.X.
  •   P. R. Puckorius and J. M. Brooke, A new practical ındex for calcium carbonate scale prediction in cooling tower systems, Corrosion, 47 (4), 280–284, 1991. https://doi.org/10.5006/1.3585256.
  •   AWWA, Standard for asbestos-cement transmission pipe, for water and other liquids, 67 (8), 462-467, 1975.
  •   J. W. Ryznar, A new index for determining amount of calcium carbonate scale formed by a water, Journal AWWA, 36, (4), 472–483, 1944. https://doi.org/ 10.1002/J.1551-8833.1944.TB20016.X.
  •   W. F. Langelier, The analytical control of anti-corrosion water treatment, J Am Water Works Assoc, 28 (10), 1500–1521, 1936. https://doi.org/10.1002/J.15 51-8833.1936.TB13785.X.
  •   S. Yıldız and C. B. Karakuş, Estimation of irrigation water quality index with development of an optimum model: a case study, Environ Dev Sustain, 22 (5), 4771–4786, 2020. https://doi.org/10.1007/S10668-01 9-00405-5.
  •   S. Medhi, R. Choudhury, P. Sharma, and B. B. Sharma, Assessment of groundwater quality for irrigation purpose in aquifers of the Upper Brahmaputra floodplains of Assam, India, Environ Monit Assess, 96 (11), 1023, 2024. https://doi.org/10.1007/S10661-024-13150-8.
  •   H. M. Ragunath, Ground Water. New Delhi: Wiley Eastern Ltd., 1987.
  •   A. K. Dandapat, P. K. Panda, S. Sankalp, and M. Jothimani, Integrated assessment of groundwater quality for sustainable irrigation in drought-prone central districts of Odisha, India, Discover Sustainability, 5, (1), 1–19, 2024. https://doi.org/10. 1007/S43621-024-00443-8.
  •   F. M. Eaton, Significance of carbonates in irrigation waters, Soil Sci, 69 (2), 1950. https://doi.org/10.10 97/00010694-195002000-00004.
  •   C. N. Durfor, E. Becker, and U. S. G. P. Office, Public Water Supplies of The 100 Largest Cities of the United States, Washington, D.C., 1964.
  •   W. F. Langelier, The Analytical Control of Anti-Corrosion Water Treatment, J Am Water Works Assoc, 28 (10), 1500–1521, 1936. https://doi.org/10.1002/J. 1551-8833.1936.TB13785.X.
  •   J. W. Ryznar, A new index for determining amount of calcium carbonate scale formed by a water, J Am Water Works Assoc, 36 (4), 472–483, 1944. https://doi.org /10.1002/J.1551-8833.1944.TB20016.X.
  •   T. E. Larson and R. V. Skold, Laboratory studies relating mineral quality of water to corrosion of steel and cast iron, Corrosion, 14 (6), 43–46, 1958. https:// doi.org/10.5006/0010-9312-14.6.43.
  •   C. N. Sawyer, Chemistry for Sanitary Engineers, 2nd ed. New York: McGraw-Hill, 1968.
  •   M. Edwards and S. Triantafyllidou, Chloride-to-sulfate mass ratio and lead leaching to water, J Am Water Works Assoc, 99 (7), 96–109, 2007. https://doi.org /10.1002/J.1551-8833.2007.TB07984.X.
  •   P. R. Roberge, Corrosion Inspection and Monitoring, John Wiley and Sons, 2007.
  •   J. N. Butler, Aquatic chemistry: An introduction emphasizing chemical equilibria in Natural Waters (Stumm, Werner), J Chem Educ, 48 (12), A779, 1971. https://doi.org/10.1021/ED048PA779.1.
  •   U. E. Dokuz, M. Çelik, Y. Kağan Kadıoğlu, M. Brehme, and H. Engin, Geothermal Evaluation of the Bayramhacılı and Tekgöz-Çiftgöz area, Central Anatolia, Turkey by a New Conceptual Reservoir Model. World Geothermal Congress 2015.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Hydrogeology, Applied Geology
Journal Section Articles
Authors

Uğur Erdem Dokuz 0000-0002-0490-0503

Selma Yaşar Korkanç 0000-0002-4805-9218

Mustafa Korkanç 0000-0001-7382-8077

Hilal Dokuz 0000-0001-7653-5990

Project Number FEB2016/14-BAGEP ve MMT2020/1-BAGEP
Early Pub Date March 27, 2025
Publication Date
Submission Date March 3, 2025
Acceptance Date March 25, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Dokuz, U. E., Yaşar Korkanç, S., Korkanç, M., Dokuz, H. (2025). Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1650043
AMA Dokuz UE, Yaşar Korkanç S, Korkanç M, Dokuz H. Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi. NOHU J. Eng. Sci. March 2025;14(2):1-1. doi:10.28948/ngumuh.1650043
Chicago Dokuz, Uğur Erdem, Selma Yaşar Korkanç, Mustafa Korkanç, and Hilal Dokuz. “Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun Kalite değerlendirmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 2 (March 2025): 1-1. https://doi.org/10.28948/ngumuh.1650043.
EndNote Dokuz UE, Yaşar Korkanç S, Korkanç M, Dokuz H (March 1, 2025) Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE U. E. Dokuz, S. Yaşar Korkanç, M. Korkanç, and H. Dokuz, “Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi”, NOHU J. Eng. Sci., vol. 14, no. 2, pp. 1–1, 2025, doi: 10.28948/ngumuh.1650043.
ISNAD Dokuz, Uğur Erdem et al. “Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun Kalite değerlendirmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (March 2025), 1-1. https://doi.org/10.28948/ngumuh.1650043.
JAMA Dokuz UE, Yaşar Korkanç S, Korkanç M, Dokuz H. Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi. NOHU J. Eng. Sci. 2025;14:1–1.
MLA Dokuz, Uğur Erdem et al. “Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun Kalite değerlendirmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 2, 2025, pp. 1-1, doi:10.28948/ngumuh.1650043.
Vancouver Dokuz UE, Yaşar Korkanç S, Korkanç M, Dokuz H. Niğde (Orta Anadolu, Türkiye) Merkezi yeraltısuyunun kalite değerlendirmesi. NOHU J. Eng. Sci. 2025;14(2):1-.

download