Research Article
BibTex RIS Cite

Lomax sönümlenmeli kanalların etkin verimlilik analizi

Year 2025, Volume: 14 Issue: 3, 1 - 1
https://doi.org/10.28948/ngumuh.1672185

Abstract

Yakın zamanda önerilen Lomax sönümlenmesinin karakteristik olarak gerçek-zamanlı ortamların sönümlenme koşullarını iyi temsil ettiği ve pratik uygulamaların analizlerinde oldukça faydalı olabileceği öngörülmektedir. Bu çalışmada, Lomax sönümlemeli kanallar altındaki tek giriş tek çıkışlı iletişim sistemlerinin etkin verimlilik analizleri gerçekleştirilmiştir. Etkin verimlilik analizinin analitik ifadesi, Meijer G fonksiyonu cinsinden kapalı formda türetilmiştir. Meijer G fonksiyonu, kablosuz haberleşme sistemlerinde farklı performans analizleri için yaygın olarak kullanılmaktadır. Ayrıca çalışmada türetilen analitik ifadelerin doğruluğunu kanıtlamak için tam değer simülasyon sonuçları ile analitik sonuçlar farklı senaryolar göz önünde bulundurularak kapsamlı şekilde karşılaştırılmıştır. Elde edilen bulgular ile çalışmada önerilen analitik ifadenin doğruluğu teyit edilmiştir.

References

  • J. F. Paris, Advances in the statistical characterization of fading: From 2005 to present, International Journal of Antennas and Propagation. 2014(1), 1–5, 2014. https://doi.org/10.1155/2014/ 258308.
  • P. M. Shankar, fading and shadowing in wireless systems. Cham: Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-53198-4.
  • M. K. Simon and M.-S. Alouini, Digital communication over fading channels, 2. ed. in Wiley series in telecommunications and signal processing. Hoboken, NJ: Wiley-Interscience, 2005.
  • S. Liu, X. Yu, R. Guo, Y. Tang, and Z. Zhao, THz channel modeling: Consolidating the road to THz communications, China Commun., 18(5), 33–49, May 2021. https://doi.org/10.23919/JCC.2021.05. 003.
  • D. Serghiou, M. Khalily, T. W. C. Brown, and R. Tafazolli, Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions, IEEE Commun. Surv. Tutorials, 24(4), 1957–1996, 2022. https://doi.org/10.1109/COMST. 2022.3205505.
  • F. Launay, NG-RAN and 5G-NR: 5G radio access network and radio interface. in Networks and telecommunications series. London Hoboken: ISTE Ltd, 2021.
  • W. Jiang and F.-L. Luo, 6G key technologies: a comprehensive guide. Hoboken, New Jersey: IEEE Press, Wiley, 2023.
  • A. Alalewi, I. Dayoub, and S. Cherkaoui, On 5G-V2X use cases and enabling technologies: A comprehensive survey, IEEE Access, 9, 107710–107737, 2021. https://doi.org/10.1109/ACCESS. 2021.3100472.
  • C. Chen, X. Chen, D. Das, D. Akhmetov, and C. Cordeiro, Overview and performance evaluation of Wi-Fi 7, IEEE Comm. Stand. Mag., 6(2), 12–18, Jun. 2022. https://doi.org/10.1109/MCOMSTD.0001.210 0082.
  • E. Reshef and C. Cordeiro, Future directions for Wi-Fi 8 and beyond, IEEE Commun. Mag., 60(10), 50–55, Oct. 2022. https://doi.org/10.1109/MCOM.003. 2200 037.
  • K. Mao et al., A UAV-aided real-time channel sounder for highly dynamic nonstationary A2G scenarios, IEEE Trans. Instrum. Meas., 72, 1–15, 2023. https://doi.org/10.1109/TIM.2023.3301592.
  • Y. Lyu, W. Wang, Y. Sun, and I. Rashdan, Measurement-based fading characteristics analysis and modeling of UAV to vehicles channel, Vehicular Communications, 45, 100707, Feb. 2024. https://doi. org/10.1016/j.vehcom.2023.100707.
  • A. S. Gvozdarev, Closed-form performance analysis of the inverse power lomax fading channel model, Mathematics, 12(19), 3103, Oct. 2024. https://doi.org /10.3390/math12193103.
  • G. Fraidenraich and M. Yacoub, The α-η-μ and α-κ-μ fading distributions, In 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, pp. 16–20, Manaus-Amazon, Brazil, Aug. 2006. https://doi.org/10.1109/ISSSTA.2006.3 11725.
  • M. D. Yacoub, The κ-μ distribution and the η-μ distribution, IEEE Antennas Propag. Mag., 49(1), 68–81, Feb. 2007. https://doi.org/10.1109/MAP. 2007. 370983.
  • M. D. Yacoub, The α-μ distribution: A physical fading model for the stacy distribution, IEEE Trans. Veh. Technol., 56(1), 27–34, Jan. 2007. https://doi.org/10. 1109/TVT.2006.883753.
  • G. S. Rabelo and M. D. Yacoub, The κ-μ extreme distribution, IEEE Trans. Commun., 59(10), 2776–2785, Oct. 2011. https://doi.org/10.1109/TCOMM. 2011.081211.090747.
  • J. F. Paris, Statistical characterization of κ−μ shadowed fading, IEEE Trans. Veh. Technol., 63(2), 518–526, Feb. 2014. https://doi.org/10.1109/TVT. 2013.22812 13.
  • M. D. Yacoub, The α - η - κ - μ fading model, IEEE Trans. Antennas Propagat., 64(8), 3597–3610, Aug. 2016. https://doi.org/10.1109/TAP.2016.2570235.
  • I. Sánchez and F. J. López-Martínez, The Lomax distribution for wireless channel modeling: Theory and applications, IEEE Open J. Veh. Technol., 5, 162–171, 2024. https://doi.org/10.1109/OJVT.2023. 33420 74.
  • O. S. Badarneh and D. B. D. Costa, Fluctuating Nakagami-m fading distribution, IEEE Wireless Commun. Lett., 13(4), 959–963, Apr. 2024, https://doi.org/10.1109/LWC.2024.3353620.
  • D. Wu and R. Negi, Effective capacity: A wireless link model for support of quality of service, IEEE Trans. Wireless Commun., 24(5), 630–643, May 2003. https://doi.org/10.1109/TWC.2003.814353.
  • H. Al‐Hmood and H. S. Al‐Raweshidy, Unified approaches based effective capacity analysis over composite α–η–μ/gamma fading channels, Electronics Letters, 54(13), 852–853, Jun. 2018. https://doi.org/ 10.1049/el.2018.1006.
  • Z. Ji, Y. Z. Wang, and J. H. Lu, MGF-based effective capacity for generalized fading channels, AMM, 929–933, Feb. 2014. https://doi.org/10.4028/www.sci entific.net/AMM.519-520.929.
  • J. Zhang, L. Dai, W. H. Gerstacker, and Z. Wang, Effective capacity of communication systems over κ – μ shadowed fading channels, Electronics Letters, 51(19), 1540–1542, Sep. 2015. https://doi.org/ 10.104 9/el.2015.1032.
  • M. You, X. Mou, and H. Sun, Effective capacity analysis of smart grid communication networks, in 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), pp. 196–200, Guildford, United Kingdom, Sep. 2015. https://doi.org/10.1109 /CA MAD.2015.7390508.
  • F. S. Almehmadi and O. S. Badarneh, On the effective capacity of Fisher–Snedecor F fading channels, Electronics Letters, 54(18), 1068–1070, Sep. 2018. https://doi.org/10.1049/el.2018.5479.
  • J. Zhang, L. Dai, Z. Wang, D. W. K. Ng, and W. H. Gerstacker, Effective rate analysis of MISO systems over α-µ fading channels, in 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1-6, San Diego, CA, Dec. 2015. https://doi.org/ 10. 1109/GLOCOM.2015.7417005.
  • J. Zhang, Z. Tan, H. Wang, Q. Huang, and L. Hanzo, The effective throughput of MISO systems over κ –μ fading channels, IEEE Trans. Veh. Technol., 63(2), 943–947, Feb. 2014. https://doi.org/10.1109/TVT .2013.2277992.
  • M. Bilim, Effective throughput of alternate rician shadowed fading links, IEEJ Transactions on Electrical and Electronic Engineering, 15(6), 928–930, 2020. https://doi.org/10.1002/tee.23135.
  • A. P. Prudnikov, J. A. Bryčkov, and O. I. Maričev, Integrals and series. 3: More special functions, Moscow, Russia: Science, 1983.
  • I. S. Gradštejn, J. M. Ryžik, A. Jeffrey, D. Zwillinger, and I. S. Gradštejn, Table of integrals, series and products, 7. ed., [3. Nachdr.]. Amsterdam: Elsevier Acad. Press, 2009.

Effective throughput analysis of Lomax fading channels

Year 2025, Volume: 14 Issue: 3, 1 - 1
https://doi.org/10.28948/ngumuh.1672185

Abstract

The recently proposed Lomax fading model is anticipated to effectively represent the fading conditions of real-time environments and be highly beneficial for the analysis of practical applications. In this study, the effective throughput analysis of single-input single-output (SISO) communication systems operating under Lomax fading channels is conducted. The analytical expression for the effective throughput is derived in closed form in terms of the Meijer-G function, which is widely utilized in various performance analyses of wireless communication systems. Furthermore, to validate the accuracy of the derived analytical expressions, the exact simulation results are comprehensively compared with the analytical findings under different scenarios. The obtained results confirm the accuracy of the proposed analytical expression.

References

  • J. F. Paris, Advances in the statistical characterization of fading: From 2005 to present, International Journal of Antennas and Propagation. 2014(1), 1–5, 2014. https://doi.org/10.1155/2014/ 258308.
  • P. M. Shankar, fading and shadowing in wireless systems. Cham: Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-53198-4.
  • M. K. Simon and M.-S. Alouini, Digital communication over fading channels, 2. ed. in Wiley series in telecommunications and signal processing. Hoboken, NJ: Wiley-Interscience, 2005.
  • S. Liu, X. Yu, R. Guo, Y. Tang, and Z. Zhao, THz channel modeling: Consolidating the road to THz communications, China Commun., 18(5), 33–49, May 2021. https://doi.org/10.23919/JCC.2021.05. 003.
  • D. Serghiou, M. Khalily, T. W. C. Brown, and R. Tafazolli, Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions, IEEE Commun. Surv. Tutorials, 24(4), 1957–1996, 2022. https://doi.org/10.1109/COMST. 2022.3205505.
  • F. Launay, NG-RAN and 5G-NR: 5G radio access network and radio interface. in Networks and telecommunications series. London Hoboken: ISTE Ltd, 2021.
  • W. Jiang and F.-L. Luo, 6G key technologies: a comprehensive guide. Hoboken, New Jersey: IEEE Press, Wiley, 2023.
  • A. Alalewi, I. Dayoub, and S. Cherkaoui, On 5G-V2X use cases and enabling technologies: A comprehensive survey, IEEE Access, 9, 107710–107737, 2021. https://doi.org/10.1109/ACCESS. 2021.3100472.
  • C. Chen, X. Chen, D. Das, D. Akhmetov, and C. Cordeiro, Overview and performance evaluation of Wi-Fi 7, IEEE Comm. Stand. Mag., 6(2), 12–18, Jun. 2022. https://doi.org/10.1109/MCOMSTD.0001.210 0082.
  • E. Reshef and C. Cordeiro, Future directions for Wi-Fi 8 and beyond, IEEE Commun. Mag., 60(10), 50–55, Oct. 2022. https://doi.org/10.1109/MCOM.003. 2200 037.
  • K. Mao et al., A UAV-aided real-time channel sounder for highly dynamic nonstationary A2G scenarios, IEEE Trans. Instrum. Meas., 72, 1–15, 2023. https://doi.org/10.1109/TIM.2023.3301592.
  • Y. Lyu, W. Wang, Y. Sun, and I. Rashdan, Measurement-based fading characteristics analysis and modeling of UAV to vehicles channel, Vehicular Communications, 45, 100707, Feb. 2024. https://doi. org/10.1016/j.vehcom.2023.100707.
  • A. S. Gvozdarev, Closed-form performance analysis of the inverse power lomax fading channel model, Mathematics, 12(19), 3103, Oct. 2024. https://doi.org /10.3390/math12193103.
  • G. Fraidenraich and M. Yacoub, The α-η-μ and α-κ-μ fading distributions, In 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, pp. 16–20, Manaus-Amazon, Brazil, Aug. 2006. https://doi.org/10.1109/ISSSTA.2006.3 11725.
  • M. D. Yacoub, The κ-μ distribution and the η-μ distribution, IEEE Antennas Propag. Mag., 49(1), 68–81, Feb. 2007. https://doi.org/10.1109/MAP. 2007. 370983.
  • M. D. Yacoub, The α-μ distribution: A physical fading model for the stacy distribution, IEEE Trans. Veh. Technol., 56(1), 27–34, Jan. 2007. https://doi.org/10. 1109/TVT.2006.883753.
  • G. S. Rabelo and M. D. Yacoub, The κ-μ extreme distribution, IEEE Trans. Commun., 59(10), 2776–2785, Oct. 2011. https://doi.org/10.1109/TCOMM. 2011.081211.090747.
  • J. F. Paris, Statistical characterization of κ−μ shadowed fading, IEEE Trans. Veh. Technol., 63(2), 518–526, Feb. 2014. https://doi.org/10.1109/TVT. 2013.22812 13.
  • M. D. Yacoub, The α - η - κ - μ fading model, IEEE Trans. Antennas Propagat., 64(8), 3597–3610, Aug. 2016. https://doi.org/10.1109/TAP.2016.2570235.
  • I. Sánchez and F. J. López-Martínez, The Lomax distribution for wireless channel modeling: Theory and applications, IEEE Open J. Veh. Technol., 5, 162–171, 2024. https://doi.org/10.1109/OJVT.2023. 33420 74.
  • O. S. Badarneh and D. B. D. Costa, Fluctuating Nakagami-m fading distribution, IEEE Wireless Commun. Lett., 13(4), 959–963, Apr. 2024, https://doi.org/10.1109/LWC.2024.3353620.
  • D. Wu and R. Negi, Effective capacity: A wireless link model for support of quality of service, IEEE Trans. Wireless Commun., 24(5), 630–643, May 2003. https://doi.org/10.1109/TWC.2003.814353.
  • H. Al‐Hmood and H. S. Al‐Raweshidy, Unified approaches based effective capacity analysis over composite α–η–μ/gamma fading channels, Electronics Letters, 54(13), 852–853, Jun. 2018. https://doi.org/ 10.1049/el.2018.1006.
  • Z. Ji, Y. Z. Wang, and J. H. Lu, MGF-based effective capacity for generalized fading channels, AMM, 929–933, Feb. 2014. https://doi.org/10.4028/www.sci entific.net/AMM.519-520.929.
  • J. Zhang, L. Dai, W. H. Gerstacker, and Z. Wang, Effective capacity of communication systems over κ – μ shadowed fading channels, Electronics Letters, 51(19), 1540–1542, Sep. 2015. https://doi.org/ 10.104 9/el.2015.1032.
  • M. You, X. Mou, and H. Sun, Effective capacity analysis of smart grid communication networks, in 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), pp. 196–200, Guildford, United Kingdom, Sep. 2015. https://doi.org/10.1109 /CA MAD.2015.7390508.
  • F. S. Almehmadi and O. S. Badarneh, On the effective capacity of Fisher–Snedecor F fading channels, Electronics Letters, 54(18), 1068–1070, Sep. 2018. https://doi.org/10.1049/el.2018.5479.
  • J. Zhang, L. Dai, Z. Wang, D. W. K. Ng, and W. H. Gerstacker, Effective rate analysis of MISO systems over α-µ fading channels, in 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1-6, San Diego, CA, Dec. 2015. https://doi.org/ 10. 1109/GLOCOM.2015.7417005.
  • J. Zhang, Z. Tan, H. Wang, Q. Huang, and L. Hanzo, The effective throughput of MISO systems over κ –μ fading channels, IEEE Trans. Veh. Technol., 63(2), 943–947, Feb. 2014. https://doi.org/10.1109/TVT .2013.2277992.
  • M. Bilim, Effective throughput of alternate rician shadowed fading links, IEEJ Transactions on Electrical and Electronic Engineering, 15(6), 928–930, 2020. https://doi.org/10.1002/tee.23135.
  • A. P. Prudnikov, J. A. Bryčkov, and O. I. Maričev, Integrals and series. 3: More special functions, Moscow, Russia: Science, 1983.
  • I. S. Gradštejn, J. M. Ryžik, A. Jeffrey, D. Zwillinger, and I. S. Gradštejn, Table of integrals, series and products, 7. ed., [3. Nachdr.]. Amsterdam: Elsevier Acad. Press, 2009.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Articles
Authors

Mehmet Bilim 0000-0003-2518-3125

Yasin Kabalcı 0000-0003-1240-817X

Early Pub Date May 23, 2025
Publication Date
Submission Date April 8, 2025
Acceptance Date May 9, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Bilim, M., & Kabalcı, Y. (2025). Lomax sönümlenmeli kanalların etkin verimlilik analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 1-1. https://doi.org/10.28948/ngumuh.1672185
AMA Bilim M, Kabalcı Y. Lomax sönümlenmeli kanalların etkin verimlilik analizi. NOHU J. Eng. Sci. May 2025;14(3):1-1. doi:10.28948/ngumuh.1672185
Chicago Bilim, Mehmet, and Yasin Kabalcı. “Lomax sönümlenmeli kanalların Etkin Verimlilik Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 3 (May 2025): 1-1. https://doi.org/10.28948/ngumuh.1672185.
EndNote Bilim M, Kabalcı Y (May 1, 2025) Lomax sönümlenmeli kanalların etkin verimlilik analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 1–1.
IEEE M. Bilim and Y. Kabalcı, “Lomax sönümlenmeli kanalların etkin verimlilik analizi”, NOHU J. Eng. Sci., vol. 14, no. 3, pp. 1–1, 2025, doi: 10.28948/ngumuh.1672185.
ISNAD Bilim, Mehmet - Kabalcı, Yasin. “Lomax sönümlenmeli kanalların Etkin Verimlilik Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (May 2025), 1-1. https://doi.org/10.28948/ngumuh.1672185.
JAMA Bilim M, Kabalcı Y. Lomax sönümlenmeli kanalların etkin verimlilik analizi. NOHU J. Eng. Sci. 2025;14:1–1.
MLA Bilim, Mehmet and Yasin Kabalcı. “Lomax sönümlenmeli kanalların Etkin Verimlilik Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 3, 2025, pp. 1-1, doi:10.28948/ngumuh.1672185.
Vancouver Bilim M, Kabalcı Y. Lomax sönümlenmeli kanalların etkin verimlilik analizi. NOHU J. Eng. Sci. 2025;14(3):1-.

download