Research Article
BibTex RIS Cite

Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin

Year 2025, Volume: 14 Issue: 3, 957 - 964, 15.07.2025
https://doi.org/10.28948/ngumuh.1646602

Abstract

Effects of lignin on the rheological, mechanical, chemical and aging properties of ethylene propylene diene monomer (EPDM) rubber used in the production of sealing profiles were investigated. It is reinforced with carbon black to provide the necessary conditions in all automotive vehicles. However, all automotive manufacturers have started to research biodegradable materials instead of petroleum-based products in vehicles due to environmental problems and human health threats. Therefore, the possibility of using lignin instead of carbon black was investigated. EPDM plate samples were prepared by adding different amounts of commercial lignin, lignin black solution and maleic anhydride modified forms. The effects of lignin as a filler were analyzed rheologically, mechanically and chemically. Also surfaces were checked by scanning electron microscope after ageing. Commercial lignin made EPDM more resistant to ultraviolet and weathering, while unmodified black solution made it less resistant than carbon black. Adding commercial lignin and its modified form instead of carbon black provided the best mechanical properties. Additionally, it was determined that the addition of lignin as a filler did not cause any chemical degradation in the EPDM matrix.

Thanks

The author wish to thank the Standard Profile Corporation, Turkey, for technical support and collaborative partnership.

References

  • M. S. C. Kumar and M. Alagar, Development and characterisation of vinyloxyaminosilane grafted ethylene-propylene-diene terpolymer (EPDM-g-VOS) for engineering applications. European Polymer Journal, 38 (10), 2023-2031, 2002. https://doi.org/10. 1016/S0014-3057(02)00087-3.
  • S. J. Ahmedi, Y. D. Huang and W. Li, Clay-polymer nanocomposites: Preparation, properties, future applications and new synthesis approach of EPDM/clay nanocomposites. Journal of Harbin Institute of Technology, 11, 138-145, 2004.
  • J. Jow, L. Gross, A. Mendelsohn, M. Aarts, and J. Kjellqvist, Overview of insulating materials system for power cable applications. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse, France, 398-402, 2004. https://doi.org/10.11 09/ICSD.2004.1350375.
  • D. M. Stelescu, A. Airinei, M. Homocianu, N. Fifere, D. Timpu and M. Aflori, Structural characteristics of some high density polyethylene/EPDM blends. Polymer Testing, 32 (2), 187-196, 2013. https://doi. org/10.1016/j.polymertesting.2012.10.010.
  • H. Chung and N. R. Washburn, Chemistry of lignin-based materials. Green Materials, 1 (3), 137-160, 2013. https://doi.org/10.1680/gmat.12.00009.
  • P. Priyodip, S. Balaji and M. V. Kini, Physio-chemico-thermo-mechanical properties of selected biodegradable polymers. Green Materials, 1 (3), 191-200, 2013. https://doi.org/10.1680/gmat.12.00017.
  • U. Vainio, N. Maximova, B. Hortling, J. Laine, P. Stenius, L. K. Simola, J. Gravitis and R. Serimaa, Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir, 20 (22), 9736-9744, 2004. https://doi.org/ 10.1021/la048407v.
  • M. Sotenko, S. R. Coles, I. McEwen, R. DeCampos, G. Barker and K. Kirwan, Biodegradation as natural fibre pre-treatment in composite manufacturing. Green Materials, 4 (1), 8-17, 2016. https://doi.org/10.1680/jgr ma.15.00025.
  • M. A. De Paoli and L. T. Furlan, Sugar cane bagasse-lignin as photo-stabilizer for butadiene rubber. Polymer Degradation and Stability, 11 (4), 327-337, 1985. https://doi.org/10.1016/0141-3910(85)90036-9.
  • L. R. C. Barclay, F. Xi and J. Q. Norris, Antioxidant properties of phenolic lignin model compounds. Journal of Wood Chemistry and Technology, 17 (1-2), 73-90, 1997. https://doi.org/10.1080/02773819708003 119.
  • C. Pouteau, P. Dole, B. Cathala, L. Averous and N. Boquillon, Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability, 81 (1), 9-18, 2003. https://doi.org/10.1016/S0141-3910(0 3)00057-0.
  • C. G. Boeriu, D. Bravo, R. J. A. Gosselink and J. E. G. van Dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20 (2), 205-218, 2004. https://doi.org/10.1016/j.indcrop.2004. 04.022.
  • T. R. Griffith and D. W. MacGregor, Aids in vulcanization of lignin–natural rubber coprecipitates. Industrial & Engineering Chemistry, 45 (2), 380-386, 1953. https://doi.org/10.1021/ie50518a039.
  • M. G. Kumaran and S. K. De, Utilization of lignins in rubber compounding. Journal of Applied Polymer Science, 22 (7), 1885-1893, 1978. https://doi.org/10.10 02/app.1978.070220711.
  • D. K. Setua, M. K. Shukla, V. Nigam, H. Singh and G. N. Mathur, Lignin reinforced rubber composites. Polymer Composites, 21 (6), 988-995, 2000. https:// doi.org/10.1002/pc.10252.
  • G. P. Mendis, S. G. Weiss, M. Korey, C. R. Boardman, M. Dietenberger, J. P. Youngblood and J. A. Howarter, Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites. Green Materials, 4 (4), 150-159, 2016. https://doi.org/10.1680/jgrma.16.0000 8.
  • J. B. Doughty and S. C. Charleston, Lignin reinforced rubber and method of preparation thereof. U. S. Patent 3, 247,135, 19 April 1966.
  • J. B. Doughty, Method of dry-milling carboxylic elastomers and alkali lignins. U. S. Patent 3, 325,427, 13 June 1967.
  • M. J. G. Davidson and R. H. Wunder, Latex coagulation process using lignin compound. U. S. Patent 4, 025,711, 24 May 1977.
  • S. P. Boutsicaris, Lignin reinforced synthetic rubber. U. S. Patent 4, 477,612, 16 October 1984.
  • D. A. Benko, B. R. Hahn and et al., Functionalized lignin, rubber containing functionalized lignin and products containing such rubber composition. U. S. Patent 8, 664,305, 4 March 2014.
  • G. Xu, G. Yan and J. Zhang, Lignin as coupling agent in EPDM rubber: thermal and mechanical properties. Polymer Bulletin, 72, 2389–2398, 2015. https://doi.org /10.1007/s00289-015-1411
  • H. Kandil, A. M. Youssef and D. E. E. Nashar, Lignin as a dry bonding system component in EPDM/microcrystalline cellulose composites. Journal of Applied Polymer Science, 139, 1-11, 2022. https:// doi.org/ 10.1002/app.51616.
  • P. Feng, J. Lei, J. Mei, W. Liu and H. Wang, Effect of lignin on the structure-property behavior of metal-coordinated and chemically crosslinked ethylene-propylene-diene-monomer composites. International Journal of Biological Macromolecules, 271, 1-10, 2024. https://doi.org/10.1016/j.ijbiomac.2024.132276.
  • B. Poyraz, Y. Guner, A. Tozluoglu and R. Arslan, Cellulose and lignin in place of EPDM and carbon black for automotive sealing profiles. International Journal of Biological Macromolecules, 236, 1–8, 2023. https://doi.org/10.1016/j.ijbiomac.2023.123964.
  • Z. Hu, X. Du, J. Liu, H. Chang and H. Jameel, Structural Characterization of Pine Kraft Lignin: Biochoice Lignin vs Indulin At. Journal of Wood Chemistry and Technology, 36, 432-446, 2016. https://doi.org/ 10.1080/02773813.2016.1214732.
  • S.S. Sarkawi and Y. Aziz, Ground rice husk as filler in rubber compounding. J. Teknol. Keluaran Khas. Dis., 39 (A), 135–148, 2003. https://doi.org/10.11113/jt.v39 .435.
  • H. Nabil, H. Ismail and A. R. Azura, Compounding, mechanical and morphological properties of carbon-black filled natural/recycled ethylene-propylene-diene monomer blends. Polymer Testing, 32, 385–393, 2013. https://doi.org/10.1016/j. polymertesting.2012.11.003.
  • W. M. Goldmann, J. Ahola, M. Mikola and J. Tanskanen, Solubility and fractionation of Indulin AT kraft lignin in ethanol-water media. Separation and Purification Technology, 209, 826-832, 2019. https:// doi.org/10.1016/j.seppur.2018.06.054.
  • L. Mathew and R. Joseph, Mechanical properties of short-ısora-fiber reinforced natural rubber composites: effects of fiber length, orientation, and loading: alkali treatment, and bonding agent. Journal of Applied Polymer Science, 103, 1640–1650, 2007. https://doi. org/10.1002/app.25065.
  • N. Sun, M. Di and Y. Liu, Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions. International Journal of Biological Macromolecules, 184, 1–8, 2021. https://doi.org/10.1016/j.ijbiomac.2021.06.038.
  • N.S. Che Mat, H. Ismail and N. Othman, Curing characteristics and tear properties of bentonite filled ethylene propylene diene (EPDM) rubber composites. Procedia Chemistry, 19, 394–400, 2016. https://doi. org/10.1016/j.proche.2016.03.029.
  • H. Ismail, M. Edyham and B. Wirjosentono, Fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polymer Testing 21 (2), 139–144, 2002. https://doi.org/10.1016/S0142-9418(0 1)00060-5.

Yeşil malzeme lignin ile güçlendirilmiş Etilen Propilen Dien Monomer (EPDM) kauçuğunun geliştirilmesi ve karakterizasyonu

Year 2025, Volume: 14 Issue: 3, 957 - 964, 15.07.2025
https://doi.org/10.28948/ngumuh.1646602

Abstract

Sızdırmazlık profilleri üretiminde kullanılan etilen propilen dien monomer (EPDM) kauçuğunun reolojik, mekanik, kimyasal ve yaşlanma özellikleri üzerine ligninin etkileri incelenmiştir. Tüm otomotiv araçlarında gerekli koşulları sağlamak için karbon siyahı ile takviye edilmektedir. Ancak tüm otomotiv üreticileri çevresel sorunlar ve insan sağlığı tehditleri nedeniyle araçlarda petrol bazlı ürünler yerine biyolojik olarak parçalanabilen malzemeler araştırmaya başlamıştır. Bu nedenle karbon siyahı yerine lignin kullanma olasılığı araştırılmıştır. Ticari lignin, ligninin siyah çözeltisi ve maleik anhidrit ile modifiye edilmiş formlarının farklı miktarlarda eklenmesiyle EPDM plaka numuneleri hazırlanmıştır. Ligninin dolgu maddesi olarak etkileri reolojik, mekanik ve kimyasal olarak analiz edilmiştir. Ayrıca yaşlandırıldıktan sonra yüzeyler taramalı elektron mikroskobu ile kontrol edilmiştir. Ticari lignin, EPDM'yi ultraviyole ve hava koşullarına karşı daha dirençli hale getirirken, modifikasyonsuz siyah çözelti, onu karbon siyahından daha az dirençli hale getirmiştir. Karbon siyahı yerine ticari ligninin ve modifiye edilmiş formunun eklenmesi en iyi mekanik özellikleri sağlamıştır. Ayrıca dolgu maddesi olarak lignin ilavesinin EPDM matrisinde herhangi bir kimyasal bozunmaya neden olmadığı belirlenmiştir.

References

  • M. S. C. Kumar and M. Alagar, Development and characterisation of vinyloxyaminosilane grafted ethylene-propylene-diene terpolymer (EPDM-g-VOS) for engineering applications. European Polymer Journal, 38 (10), 2023-2031, 2002. https://doi.org/10. 1016/S0014-3057(02)00087-3.
  • S. J. Ahmedi, Y. D. Huang and W. Li, Clay-polymer nanocomposites: Preparation, properties, future applications and new synthesis approach of EPDM/clay nanocomposites. Journal of Harbin Institute of Technology, 11, 138-145, 2004.
  • J. Jow, L. Gross, A. Mendelsohn, M. Aarts, and J. Kjellqvist, Overview of insulating materials system for power cable applications. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse, France, 398-402, 2004. https://doi.org/10.11 09/ICSD.2004.1350375.
  • D. M. Stelescu, A. Airinei, M. Homocianu, N. Fifere, D. Timpu and M. Aflori, Structural characteristics of some high density polyethylene/EPDM blends. Polymer Testing, 32 (2), 187-196, 2013. https://doi. org/10.1016/j.polymertesting.2012.10.010.
  • H. Chung and N. R. Washburn, Chemistry of lignin-based materials. Green Materials, 1 (3), 137-160, 2013. https://doi.org/10.1680/gmat.12.00009.
  • P. Priyodip, S. Balaji and M. V. Kini, Physio-chemico-thermo-mechanical properties of selected biodegradable polymers. Green Materials, 1 (3), 191-200, 2013. https://doi.org/10.1680/gmat.12.00017.
  • U. Vainio, N. Maximova, B. Hortling, J. Laine, P. Stenius, L. K. Simola, J. Gravitis and R. Serimaa, Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir, 20 (22), 9736-9744, 2004. https://doi.org/ 10.1021/la048407v.
  • M. Sotenko, S. R. Coles, I. McEwen, R. DeCampos, G. Barker and K. Kirwan, Biodegradation as natural fibre pre-treatment in composite manufacturing. Green Materials, 4 (1), 8-17, 2016. https://doi.org/10.1680/jgr ma.15.00025.
  • M. A. De Paoli and L. T. Furlan, Sugar cane bagasse-lignin as photo-stabilizer for butadiene rubber. Polymer Degradation and Stability, 11 (4), 327-337, 1985. https://doi.org/10.1016/0141-3910(85)90036-9.
  • L. R. C. Barclay, F. Xi and J. Q. Norris, Antioxidant properties of phenolic lignin model compounds. Journal of Wood Chemistry and Technology, 17 (1-2), 73-90, 1997. https://doi.org/10.1080/02773819708003 119.
  • C. Pouteau, P. Dole, B. Cathala, L. Averous and N. Boquillon, Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability, 81 (1), 9-18, 2003. https://doi.org/10.1016/S0141-3910(0 3)00057-0.
  • C. G. Boeriu, D. Bravo, R. J. A. Gosselink and J. E. G. van Dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20 (2), 205-218, 2004. https://doi.org/10.1016/j.indcrop.2004. 04.022.
  • T. R. Griffith and D. W. MacGregor, Aids in vulcanization of lignin–natural rubber coprecipitates. Industrial & Engineering Chemistry, 45 (2), 380-386, 1953. https://doi.org/10.1021/ie50518a039.
  • M. G. Kumaran and S. K. De, Utilization of lignins in rubber compounding. Journal of Applied Polymer Science, 22 (7), 1885-1893, 1978. https://doi.org/10.10 02/app.1978.070220711.
  • D. K. Setua, M. K. Shukla, V. Nigam, H. Singh and G. N. Mathur, Lignin reinforced rubber composites. Polymer Composites, 21 (6), 988-995, 2000. https:// doi.org/10.1002/pc.10252.
  • G. P. Mendis, S. G. Weiss, M. Korey, C. R. Boardman, M. Dietenberger, J. P. Youngblood and J. A. Howarter, Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites. Green Materials, 4 (4), 150-159, 2016. https://doi.org/10.1680/jgrma.16.0000 8.
  • J. B. Doughty and S. C. Charleston, Lignin reinforced rubber and method of preparation thereof. U. S. Patent 3, 247,135, 19 April 1966.
  • J. B. Doughty, Method of dry-milling carboxylic elastomers and alkali lignins. U. S. Patent 3, 325,427, 13 June 1967.
  • M. J. G. Davidson and R. H. Wunder, Latex coagulation process using lignin compound. U. S. Patent 4, 025,711, 24 May 1977.
  • S. P. Boutsicaris, Lignin reinforced synthetic rubber. U. S. Patent 4, 477,612, 16 October 1984.
  • D. A. Benko, B. R. Hahn and et al., Functionalized lignin, rubber containing functionalized lignin and products containing such rubber composition. U. S. Patent 8, 664,305, 4 March 2014.
  • G. Xu, G. Yan and J. Zhang, Lignin as coupling agent in EPDM rubber: thermal and mechanical properties. Polymer Bulletin, 72, 2389–2398, 2015. https://doi.org /10.1007/s00289-015-1411
  • H. Kandil, A. M. Youssef and D. E. E. Nashar, Lignin as a dry bonding system component in EPDM/microcrystalline cellulose composites. Journal of Applied Polymer Science, 139, 1-11, 2022. https:// doi.org/ 10.1002/app.51616.
  • P. Feng, J. Lei, J. Mei, W. Liu and H. Wang, Effect of lignin on the structure-property behavior of metal-coordinated and chemically crosslinked ethylene-propylene-diene-monomer composites. International Journal of Biological Macromolecules, 271, 1-10, 2024. https://doi.org/10.1016/j.ijbiomac.2024.132276.
  • B. Poyraz, Y. Guner, A. Tozluoglu and R. Arslan, Cellulose and lignin in place of EPDM and carbon black for automotive sealing profiles. International Journal of Biological Macromolecules, 236, 1–8, 2023. https://doi.org/10.1016/j.ijbiomac.2023.123964.
  • Z. Hu, X. Du, J. Liu, H. Chang and H. Jameel, Structural Characterization of Pine Kraft Lignin: Biochoice Lignin vs Indulin At. Journal of Wood Chemistry and Technology, 36, 432-446, 2016. https://doi.org/ 10.1080/02773813.2016.1214732.
  • S.S. Sarkawi and Y. Aziz, Ground rice husk as filler in rubber compounding. J. Teknol. Keluaran Khas. Dis., 39 (A), 135–148, 2003. https://doi.org/10.11113/jt.v39 .435.
  • H. Nabil, H. Ismail and A. R. Azura, Compounding, mechanical and morphological properties of carbon-black filled natural/recycled ethylene-propylene-diene monomer blends. Polymer Testing, 32, 385–393, 2013. https://doi.org/10.1016/j. polymertesting.2012.11.003.
  • W. M. Goldmann, J. Ahola, M. Mikola and J. Tanskanen, Solubility and fractionation of Indulin AT kraft lignin in ethanol-water media. Separation and Purification Technology, 209, 826-832, 2019. https:// doi.org/10.1016/j.seppur.2018.06.054.
  • L. Mathew and R. Joseph, Mechanical properties of short-ısora-fiber reinforced natural rubber composites: effects of fiber length, orientation, and loading: alkali treatment, and bonding agent. Journal of Applied Polymer Science, 103, 1640–1650, 2007. https://doi. org/10.1002/app.25065.
  • N. Sun, M. Di and Y. Liu, Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions. International Journal of Biological Macromolecules, 184, 1–8, 2021. https://doi.org/10.1016/j.ijbiomac.2021.06.038.
  • N.S. Che Mat, H. Ismail and N. Othman, Curing characteristics and tear properties of bentonite filled ethylene propylene diene (EPDM) rubber composites. Procedia Chemistry, 19, 394–400, 2016. https://doi. org/10.1016/j.proche.2016.03.029.
  • H. Ismail, M. Edyham and B. Wirjosentono, Fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polymer Testing 21 (2), 139–144, 2002. https://doi.org/10.1016/S0142-9418(0 1)00060-5.
There are 33 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes, Materials Science and Technologies
Journal Section Research Articles
Authors

Sibel Dikmen Küçük 0000-0002-7852-5128

Early Pub Date May 23, 2025
Publication Date July 15, 2025
Submission Date February 25, 2025
Acceptance Date May 14, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Dikmen Küçük, S. (2025). Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 957-964. https://doi.org/10.28948/ngumuh.1646602
AMA Dikmen Küçük S. Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin. NOHU J. Eng. Sci. July 2025;14(3):957-964. doi:10.28948/ngumuh.1646602
Chicago Dikmen Küçük, Sibel. “Development and Characterization of Ethylene Propylene Diene Monomer (EPDM) Rubber Reinforced by Green Material Lignin”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 3 (July 2025): 957-64. https://doi.org/10.28948/ngumuh.1646602.
EndNote Dikmen Küçük S (July 1, 2025) Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 957–964.
IEEE S. Dikmen Küçük, “Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin”, NOHU J. Eng. Sci., vol. 14, no. 3, pp. 957–964, 2025, doi: 10.28948/ngumuh.1646602.
ISNAD Dikmen Küçük, Sibel. “Development and Characterization of Ethylene Propylene Diene Monomer (EPDM) Rubber Reinforced by Green Material Lignin”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (July2025), 957-964. https://doi.org/10.28948/ngumuh.1646602.
JAMA Dikmen Küçük S. Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin. NOHU J. Eng. Sci. 2025;14:957–964.
MLA Dikmen Küçük, Sibel. “Development and Characterization of Ethylene Propylene Diene Monomer (EPDM) Rubber Reinforced by Green Material Lignin”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 3, 2025, pp. 957-64, doi:10.28948/ngumuh.1646602.
Vancouver Dikmen Küçük S. Development and characterization of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by green material lignin. NOHU J. Eng. Sci. 2025;14(3):957-64.

download