Research Article
BibTex RIS Cite

3B baskılı PLA malzemelerin silika takviyeli epoksi kompozit ile daldırmalı kaplanmasının mekanik özelliklere etkisinin incelenmesi

Year 2025, Volume: 14 Issue: 3, 855 - 864, 15.07.2025
https://doi.org/10.28948/ngumuh.1661647

Abstract

Bir malzemenin yüzeyine, mekanik özelliklerini iyileştirmek amacıyla kompozit bir kaplama uygulanması işlemi özellikle düşük mekanik dayanımlı parçalar için önemlidir. Kaplama için kullanılan kompozitlerden birisi de seramik katkılı polimer kompozitlerdir. Birçok endüstride yaygın olarak kullanılan bu kompozitlerin, endüstriyel kaplama yönteminde kullanımıyla daha dayanımlı malzeme üretimi sağlanabilmektedir. Bu çalışmada, eklemeli imalat ve malzeme kaplama yöntemleri kullanarak 3B yazıcı ile %10, %15 ve %20 iç dolgu oranlarında üretilen PLA parçaların dış kısmı ağırlıkça %15 silisyum dioksit olan seramik takviyeli epoksi malzemeler ile kaplanarak kompozit malzemeler üretilmiştir. Üretim parametrelerinin çekme dayanımına ve sertliğine etkisi araştırılarak SEM analizleri gerçekleştirilmiştir. Çalışma sonucunda iç dolgu oranı %20 olan kaplamalı numunenin 22,34 MPa ile maksimum çekme dayanımına ve 74,7 Shore D ile maksimum sertlik değerine sahip olduğu bulunmuştur. SEM sonuçları ile kaplamaların parça yüzeyine homojen bir şekilde sağlandığı desteklenmiştir. Elde edilen sonuçlar, 3B üretilen malzemelerin kaplanması ile yüksek performanslı malzemeler üretme konusunda önemli bir potansiyele sahip olduğunu kanıtlamaktadır.

References

  • L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice, Z. Al Tamimi, G. Hansotte, L. D. Sunkara, J. Bernat, Additive manufacturing: A comprehensive review. Sensors, 24, 2668, 2024. http://doi.org/10.3390/s24092668.
  •    J. Fang, Z. Wang, W. Liu, S. Lauria, N. Zeng, C. Prieto, F. Sikström, X. Liu, A new particle swarm optimization algorithm for outlier detection: Industrial data clustering in wire arc additive manufacturing. IEEE Transactions on Automation Science and Engineering, 21, 1244-1257, 2024. http://doi.org/10.1109/TASE.2022.3230080.
  •    M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65, 737-760, 2016. http://doi.org/10.1016/j.cirp.2016.05.004.
  •    V. Tagliaferri, F. Trovalusci, S. Guarino, S. Venettacci, Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials, 12, 4161, 2019. http://doi.org/10.3390/ma12244161.
  •    C. H. Lee, F. N. B. M. Padzil, S. H. Lee, Z. M. A. Ainun, L. C. Abdullah, Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review. Polymers, 13, 1407, 2021. http://doi.org/10.3390/polym13091407.
  •    M. Algarni and S. Ghazali, Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals, 11, 995, 2021. http://doi.org/10.3390/cryst11080995.
  •    N. Al-Mazrouei, A. Ismail, W. Ahmed, A. H. Al-Marzouqi, ABS/Silicon dioxide micro particulate composite from 3D printing polymeric waste. Polymers, 14, 509, 2022. http://doi.org/10.3390/polym14030509.
  •    K. C. Shekar, B. Singaravel, S. D. Prasad, N. Venkateshwarlu, Effect of fiber orientation on the flexural properties of glass fiber reinforced, epoxy- matrix composite. Materials Science Forum, 969, 502-507, 2019. http://doi.org/10.4028/www.scientific.net/MSF.969.502.
  •    S. Kangishwar, N. Radhika, A. A. Sheik, A. Chavali, S. Hariharan, A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 80, 47-87, 2023. http://doi.org/10.1007/s00289-022-04087-4.
  • K. Niendorf and B. Raeymaekers, Additive manufacturing of polymer matrix composite materials with aligned or organized filler material: A review. Advanced Engineering Materials, 23, 2001002, 2021. http://doi.org/10.1002/adem.202001002.
  • S. Sajan and D. P. Selvaraj, A review on polymer matrix composite materials and their applications. Materials Today: Proceedings, 47, 5493-5498, 2021. http://doi.org/10.1016/j.matpr.2021.08.034.
  • X. Zhao, S. Lu, W. Li, S. Zhang, K. Li, K. Nawaz, P. Wang, G. Yang, A. Ragauskas, S. Ozcan, E. Webb, Epoxy as Filler or Matrix for Polymer Composites, Epoxy-Based Composites. IntechOpen, 2022. http://doi.org/10.5772/intechopen.102448.
  • R. Saminathan, H. Hadidi, Y. A. Fageehi, P. Manoj Kumar, M. Venkatasudhahar, Ankit, S. Ram, D. T. Gebreyohannes, Experimental analysis of mechanical and thermal characteristics of luffa/epoxy polymer composite under the influence of nanosilica. Advances in Materials Science and Engineering, 2022, 1-9, 2022. http://doi.org/10.1155/2022/6040629.
  • W. Ahmed, S. Siraj, A. H. Al-Marzouqi, 3D printing PLA waste to produce ceramic based particulate reinforced composite using abundant silica-sand: mechanical properties characterization. Polymers, 12, 2579, 2020. http://doi.org/10.3390/polym12112579.
  • J. S. Jang, H. Kim, R. F. Gibson, J. Suhr, Effective in situ material properties of micron-sized SiO2 particles in SiO2 particulate polymer composites. Materials & Design, 51, 219-224, 2013. http://doi.org/10.1016/j.matdes.2013.04.025.
  • C. L. Poh, M. Mariatti, M. N. Ahmad Fauzi, C. H. Ng, C.K. Chee, T. P. Chuah, Tensile, dielectric, and thermal properties of epoxy composites filled with silica, mica, and calcium carbonate. Journal of Materials Science: Materials in Electronics, 25, 2111-2119, 2014. http://doi.org/10.1007/s10854-014-1847-9.
  • H. S. Jo, G. W. Lee, Investigation of mechanical and thermal properties of silica-reinforced epoxy composites by using experiment and empirical model. Materials Today: Proceedings, 4, 6178-6187, 2017. http://doi.org/10.1016/j.matpr.2017.06.113.
  • J. Sh. AbdulRazaq, A. K. F. Hassan, N. H. Jasim, Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials. AIMS Materials Science, 10, 182-199, 2023. http://doi.org/10.3934/matersci.2023010.
  • K. Bharadwaja, S. Srinivasa Rao, T. B. Rao, Investigation of tensile and flexural behavior of epoxy and SiO2 composite: An experimental study. Materials Today: Proceedings, 45, 2649-2652, 2021. http://doi.org/10.1016/j.matpr.2020.11.514.
  • M. M. Abd, H. I. Jaffer, E. A. Al-Ajaj, Comparison study of some mechanical properties of micro and nano silica EP composites. Iraqi Journal of Physics, 10, 62-68, 2012. http://doi.org/10.13140/RG.2.2.23605.42725.
  • J. Žigon, M. Kariž, M. Pavlič, Surface finishing of 3D-printed polymers with selected coatings. Polymers, 12, 2797, 2020. http://doi.org/10.3390/polym12122797.
  • P. L. Teh, M. Mariatti, H. M. Akil, C. K. Yeoh, K. N. Seetharamu, A. N. R. Wagiman, K. S. Beh, The properties of epoxy resin coated silica fillers composites. Materials Letters, 61, 2156-2158, 2007. http://doi.org/10.1016/j.matlet.2006.08.036.
  • K. M. Lee, H. Park, J. Kim, D. M. Chun, Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles. Applied Surface Science, 467-468, 979-991, 2019. http://doi.org/10.1016/j.apsusc.2018.10.205.
  • H. Yang, F. Ji, Z. Li, S. Tao, Preparation of hydrophobic surface on PLA and ABS by fused deposition modeling. Polymers, 12, 1539, 2020. http://doi.org/10.3390/polym12071539.
  • Y. Tu, F. Zhou, Y. Cheng, H. Jiang, C. Wang, F. Bai, J. Lin, The control mechanism of micron and nano SiO2 /epoxy composite coating on surface charge in epoxy resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1275-1284, 2018. http://doi.org/10.1109/TDEI.2018.007188.
  • S. Hiremath, J. F. Dsouza, D. S. Chiniwar, H. M. Vishwanatha, B. Mallikarjuna, Exploring the impact of epoxy coated 3D-Printed polymers on surface roughness and mechanical behavior: An experimental and numerical study. Results in Engineering, 23, 102779, 2024. http://doi.org/10.1016/j.rineng.2024.102779.
  • J. M. Chacón, M. A. Caminero, E. García-Plaza, P. J. Núñez, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143-157, 2017. http://doi.org/10.1016/j.matdes.2017.03.065.
  • Y. Jiang, K. Tohgo, Y. Shimamura, Ultrasonic dispersion of SiO2 particles in glassy epoxy resin. Journal of Composite Materials, 46, 1159-1168, 2012. http://doi.org/10.1177/0021998311413688.
  • Md. Q. Tanveer, G. Mishra, S. Mishra, R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review. Materials Today: Proceedings, 62, 100-108, 2022. http://doi.org/10.1016/j.matpr.2022.02.310.
  • N. Maguluri, G. Suresh, K. V. Rao, Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method. Journal of Thermoplastic Composite Materials, 36, 1472-1488, 2023. http://doi.org/10.1177/08927057211053036.
  • K. S. Seol, P. Zhao, B. C. Shin, S. U. Zhang, Infill print parameters for mechanical properties of 3D printed PLA parts. Journal of the Korean Society of Manufacturing Process Engineers, 17, 9-16, 2018. http://doi.org/10.14775/ksmpe.2018.17.4.009.
  • A. Pandzic, D. Hodzic, A. Milovanovic, Effect of infill type and density on tensile properties of PLA material for FDM process, DAAAM Proceedings, DAAAM International Vienna, 0545-0554, 2019. http://doi.org/10.2507/30th.daaam.proceedings.074.
  • C. Abeykoon, P. S. Amphorn, A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3, 284-297, 2020. http://doi.org/10.1016/j.ijlmm.2020.03.003.
  • B. M. Tymrak, M. Kreiger, J. M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242-246, 2014. http://doi.org/10.1016/j.matdes.2014.02.038.
  • G. Dharmalingam, M. A. Prasad, S. Salunkhe, Investigation of impact strength at different infill rates biodegradable PLA constituent through fused deposition modeling. Materials Today: Proceedings, 62, 551-558, 2022. http://doi.org/10.1016/j.matpr.2022.03.591.
  • Y. Taha, M. Hamoud, A. Barakat, A study on mechanical properties and building time of PLA 3D printed parts with rectilinear pattern, variable layer thicknesses, build directions, and infill percentages. MSA Engineering Journal, 2024. http://doi.org/10.21608/msaeng.2024.251794.1350.
  • M. Hamoud, S. Salunkhe, L. Cepova, H. M. A. Hussien, The impact of various filling patterns and building orientations on the mechanical characteristics and building time of PLA using FDM. International Journal of Polymer Science, 2024, 1752769, 2024. http://doi.org/10.1155/2024/1752769.
  • N. Maguluri, G. Suresh, S. R. Guntur, Effect of printing parameters on the hardness of 3D printed poly-lactic acid parts using DOE approach. IOP Conference Series: Materials Science and Engineering, 1248, 012004, 2022. http://doi.org/10.1088/1757-899X/1248/1/012004.
  • G. Dakhil, R. Salih, A. Hameed, Influence of infill pattern, infill ratio on compressive strength and hardness of 3D printed polylactic acid (PLA) based polymer. Journal of Applied Sciences and Nanotechnology, 3, 1-7, 2023. http://doi.org/10.53293/jasn.2022.4745.1141.
  • M. M. Hanon, J. Dobos, L. Zsidai, The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness. Procedia Manufacturing, 54, 244-249, 2021. http://doi.org/10.1016/j.promfg.2021.07.038.

Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials

Year 2025, Volume: 14 Issue: 3, 855 - 864, 15.07.2025
https://doi.org/10.28948/ngumuh.1661647

Abstract

Coating parts with a composite improves mechanical strength, especially for low-strength materials. Ceramic reinforced polymer composites are one such coating, used in many industries to produce durable materials. In the study, composite materials were produced by coating the outer part of PLA parts produced with 10%, 15% and 20% fill densities with a 3D printer using additive manufacturing and material coating methods, with ceramic reinforced epoxy materials containing 15% silicon dioxide by weight. The impacts of the manufacturing parameters on tensile strength and hardness were investigated and SEM analyses were performed. The study concluded that the coated sample with an filler density of 20% demonstrated a maximum tensile strength of 22.34 MPa and a maximum hardness value of 74.7 Shore D. The SEM results showed the coatings were evenly deposited on the part's surface. The findings indicate that the coating of 3D-manufactured materials possesses considerable potential to produce high-performance materials.

References

  • L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice, Z. Al Tamimi, G. Hansotte, L. D. Sunkara, J. Bernat, Additive manufacturing: A comprehensive review. Sensors, 24, 2668, 2024. http://doi.org/10.3390/s24092668.
  •    J. Fang, Z. Wang, W. Liu, S. Lauria, N. Zeng, C. Prieto, F. Sikström, X. Liu, A new particle swarm optimization algorithm for outlier detection: Industrial data clustering in wire arc additive manufacturing. IEEE Transactions on Automation Science and Engineering, 21, 1244-1257, 2024. http://doi.org/10.1109/TASE.2022.3230080.
  •    M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65, 737-760, 2016. http://doi.org/10.1016/j.cirp.2016.05.004.
  •    V. Tagliaferri, F. Trovalusci, S. Guarino, S. Venettacci, Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials, 12, 4161, 2019. http://doi.org/10.3390/ma12244161.
  •    C. H. Lee, F. N. B. M. Padzil, S. H. Lee, Z. M. A. Ainun, L. C. Abdullah, Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review. Polymers, 13, 1407, 2021. http://doi.org/10.3390/polym13091407.
  •    M. Algarni and S. Ghazali, Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals, 11, 995, 2021. http://doi.org/10.3390/cryst11080995.
  •    N. Al-Mazrouei, A. Ismail, W. Ahmed, A. H. Al-Marzouqi, ABS/Silicon dioxide micro particulate composite from 3D printing polymeric waste. Polymers, 14, 509, 2022. http://doi.org/10.3390/polym14030509.
  •    K. C. Shekar, B. Singaravel, S. D. Prasad, N. Venkateshwarlu, Effect of fiber orientation on the flexural properties of glass fiber reinforced, epoxy- matrix composite. Materials Science Forum, 969, 502-507, 2019. http://doi.org/10.4028/www.scientific.net/MSF.969.502.
  •    S. Kangishwar, N. Radhika, A. A. Sheik, A. Chavali, S. Hariharan, A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 80, 47-87, 2023. http://doi.org/10.1007/s00289-022-04087-4.
  • K. Niendorf and B. Raeymaekers, Additive manufacturing of polymer matrix composite materials with aligned or organized filler material: A review. Advanced Engineering Materials, 23, 2001002, 2021. http://doi.org/10.1002/adem.202001002.
  • S. Sajan and D. P. Selvaraj, A review on polymer matrix composite materials and their applications. Materials Today: Proceedings, 47, 5493-5498, 2021. http://doi.org/10.1016/j.matpr.2021.08.034.
  • X. Zhao, S. Lu, W. Li, S. Zhang, K. Li, K. Nawaz, P. Wang, G. Yang, A. Ragauskas, S. Ozcan, E. Webb, Epoxy as Filler or Matrix for Polymer Composites, Epoxy-Based Composites. IntechOpen, 2022. http://doi.org/10.5772/intechopen.102448.
  • R. Saminathan, H. Hadidi, Y. A. Fageehi, P. Manoj Kumar, M. Venkatasudhahar, Ankit, S. Ram, D. T. Gebreyohannes, Experimental analysis of mechanical and thermal characteristics of luffa/epoxy polymer composite under the influence of nanosilica. Advances in Materials Science and Engineering, 2022, 1-9, 2022. http://doi.org/10.1155/2022/6040629.
  • W. Ahmed, S. Siraj, A. H. Al-Marzouqi, 3D printing PLA waste to produce ceramic based particulate reinforced composite using abundant silica-sand: mechanical properties characterization. Polymers, 12, 2579, 2020. http://doi.org/10.3390/polym12112579.
  • J. S. Jang, H. Kim, R. F. Gibson, J. Suhr, Effective in situ material properties of micron-sized SiO2 particles in SiO2 particulate polymer composites. Materials & Design, 51, 219-224, 2013. http://doi.org/10.1016/j.matdes.2013.04.025.
  • C. L. Poh, M. Mariatti, M. N. Ahmad Fauzi, C. H. Ng, C.K. Chee, T. P. Chuah, Tensile, dielectric, and thermal properties of epoxy composites filled with silica, mica, and calcium carbonate. Journal of Materials Science: Materials in Electronics, 25, 2111-2119, 2014. http://doi.org/10.1007/s10854-014-1847-9.
  • H. S. Jo, G. W. Lee, Investigation of mechanical and thermal properties of silica-reinforced epoxy composites by using experiment and empirical model. Materials Today: Proceedings, 4, 6178-6187, 2017. http://doi.org/10.1016/j.matpr.2017.06.113.
  • J. Sh. AbdulRazaq, A. K. F. Hassan, N. H. Jasim, Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials. AIMS Materials Science, 10, 182-199, 2023. http://doi.org/10.3934/matersci.2023010.
  • K. Bharadwaja, S. Srinivasa Rao, T. B. Rao, Investigation of tensile and flexural behavior of epoxy and SiO2 composite: An experimental study. Materials Today: Proceedings, 45, 2649-2652, 2021. http://doi.org/10.1016/j.matpr.2020.11.514.
  • M. M. Abd, H. I. Jaffer, E. A. Al-Ajaj, Comparison study of some mechanical properties of micro and nano silica EP composites. Iraqi Journal of Physics, 10, 62-68, 2012. http://doi.org/10.13140/RG.2.2.23605.42725.
  • J. Žigon, M. Kariž, M. Pavlič, Surface finishing of 3D-printed polymers with selected coatings. Polymers, 12, 2797, 2020. http://doi.org/10.3390/polym12122797.
  • P. L. Teh, M. Mariatti, H. M. Akil, C. K. Yeoh, K. N. Seetharamu, A. N. R. Wagiman, K. S. Beh, The properties of epoxy resin coated silica fillers composites. Materials Letters, 61, 2156-2158, 2007. http://doi.org/10.1016/j.matlet.2006.08.036.
  • K. M. Lee, H. Park, J. Kim, D. M. Chun, Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles. Applied Surface Science, 467-468, 979-991, 2019. http://doi.org/10.1016/j.apsusc.2018.10.205.
  • H. Yang, F. Ji, Z. Li, S. Tao, Preparation of hydrophobic surface on PLA and ABS by fused deposition modeling. Polymers, 12, 1539, 2020. http://doi.org/10.3390/polym12071539.
  • Y. Tu, F. Zhou, Y. Cheng, H. Jiang, C. Wang, F. Bai, J. Lin, The control mechanism of micron and nano SiO2 /epoxy composite coating on surface charge in epoxy resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1275-1284, 2018. http://doi.org/10.1109/TDEI.2018.007188.
  • S. Hiremath, J. F. Dsouza, D. S. Chiniwar, H. M. Vishwanatha, B. Mallikarjuna, Exploring the impact of epoxy coated 3D-Printed polymers on surface roughness and mechanical behavior: An experimental and numerical study. Results in Engineering, 23, 102779, 2024. http://doi.org/10.1016/j.rineng.2024.102779.
  • J. M. Chacón, M. A. Caminero, E. García-Plaza, P. J. Núñez, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143-157, 2017. http://doi.org/10.1016/j.matdes.2017.03.065.
  • Y. Jiang, K. Tohgo, Y. Shimamura, Ultrasonic dispersion of SiO2 particles in glassy epoxy resin. Journal of Composite Materials, 46, 1159-1168, 2012. http://doi.org/10.1177/0021998311413688.
  • Md. Q. Tanveer, G. Mishra, S. Mishra, R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review. Materials Today: Proceedings, 62, 100-108, 2022. http://doi.org/10.1016/j.matpr.2022.02.310.
  • N. Maguluri, G. Suresh, K. V. Rao, Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method. Journal of Thermoplastic Composite Materials, 36, 1472-1488, 2023. http://doi.org/10.1177/08927057211053036.
  • K. S. Seol, P. Zhao, B. C. Shin, S. U. Zhang, Infill print parameters for mechanical properties of 3D printed PLA parts. Journal of the Korean Society of Manufacturing Process Engineers, 17, 9-16, 2018. http://doi.org/10.14775/ksmpe.2018.17.4.009.
  • A. Pandzic, D. Hodzic, A. Milovanovic, Effect of infill type and density on tensile properties of PLA material for FDM process, DAAAM Proceedings, DAAAM International Vienna, 0545-0554, 2019. http://doi.org/10.2507/30th.daaam.proceedings.074.
  • C. Abeykoon, P. S. Amphorn, A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3, 284-297, 2020. http://doi.org/10.1016/j.ijlmm.2020.03.003.
  • B. M. Tymrak, M. Kreiger, J. M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242-246, 2014. http://doi.org/10.1016/j.matdes.2014.02.038.
  • G. Dharmalingam, M. A. Prasad, S. Salunkhe, Investigation of impact strength at different infill rates biodegradable PLA constituent through fused deposition modeling. Materials Today: Proceedings, 62, 551-558, 2022. http://doi.org/10.1016/j.matpr.2022.03.591.
  • Y. Taha, M. Hamoud, A. Barakat, A study on mechanical properties and building time of PLA 3D printed parts with rectilinear pattern, variable layer thicknesses, build directions, and infill percentages. MSA Engineering Journal, 2024. http://doi.org/10.21608/msaeng.2024.251794.1350.
  • M. Hamoud, S. Salunkhe, L. Cepova, H. M. A. Hussien, The impact of various filling patterns and building orientations on the mechanical characteristics and building time of PLA using FDM. International Journal of Polymer Science, 2024, 1752769, 2024. http://doi.org/10.1155/2024/1752769.
  • N. Maguluri, G. Suresh, S. R. Guntur, Effect of printing parameters on the hardness of 3D printed poly-lactic acid parts using DOE approach. IOP Conference Series: Materials Science and Engineering, 1248, 012004, 2022. http://doi.org/10.1088/1757-899X/1248/1/012004.
  • G. Dakhil, R. Salih, A. Hameed, Influence of infill pattern, infill ratio on compressive strength and hardness of 3D printed polylactic acid (PLA) based polymer. Journal of Applied Sciences and Nanotechnology, 3, 1-7, 2023. http://doi.org/10.53293/jasn.2022.4745.1141.
  • M. M. Hanon, J. Dobos, L. Zsidai, The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness. Procedia Manufacturing, 54, 244-249, 2021. http://doi.org/10.1016/j.promfg.2021.07.038.
There are 40 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

İbrahim Aslan 0000-0002-9157-9286

Early Pub Date May 23, 2025
Publication Date July 15, 2025
Submission Date March 20, 2025
Acceptance Date April 17, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Aslan, İ. (2025). Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 855-864. https://doi.org/10.28948/ngumuh.1661647
AMA Aslan İ. Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials. NOHU J. Eng. Sci. July 2025;14(3):855-864. doi:10.28948/ngumuh.1661647
Chicago Aslan, İbrahim. “Investigation of the Effect of Dip Coating With Silica Reinforced Epoxy Composite on the Mechanical Properties of 3D Printed PLA Materials”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 3 (July 2025): 855-64. https://doi.org/10.28948/ngumuh.1661647.
EndNote Aslan İ (July 1, 2025) Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 855–864.
IEEE İ. Aslan, “Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials”, NOHU J. Eng. Sci., vol. 14, no. 3, pp. 855–864, 2025, doi: 10.28948/ngumuh.1661647.
ISNAD Aslan, İbrahim. “Investigation of the Effect of Dip Coating With Silica Reinforced Epoxy Composite on the Mechanical Properties of 3D Printed PLA Materials”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (July2025), 855-864. https://doi.org/10.28948/ngumuh.1661647.
JAMA Aslan İ. Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials. NOHU J. Eng. Sci. 2025;14:855–864.
MLA Aslan, İbrahim. “Investigation of the Effect of Dip Coating With Silica Reinforced Epoxy Composite on the Mechanical Properties of 3D Printed PLA Materials”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 3, 2025, pp. 855-64, doi:10.28948/ngumuh.1661647.
Vancouver Aslan İ. Investigation of the effect of dip coating with silica reinforced epoxy composite on the mechanical properties of 3D printed PLA materials. NOHU J. Eng. Sci. 2025;14(3):855-64.

download