Research Article
BibTex RIS Cite

Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights

Year 2025, Volume: 14 Issue: 3, 1082 - 1087, 15.07.2025
https://doi.org/10.28948/ngumuh.1681889

Abstract

In this work, a novel composite material composed of NaH and GO was prepared and investigated for hydrogen storage. The composite was prepared using ball milling techniques and was also characterized by Raman spectroscopy, XRD, BET measurements, and SEM. Raman spectroscopy established hydrogenation induced the formation of large defects in the GO matrix and shifts in phonon modes of NaH vibrational modes, establishing structural changes through hydrogen interaction. XRD findings indicated lattice contraction and decrease in crystallite size upon hydrogen absorption, and secondary phases such as NaOH and NaO₂H₃ were also present due to the sensitivity of NaH to environmental oxygen and humidity. BET analysis revealed a surface area of 9.42 m²/g with an average pore diameter of ≤68.79 nm, and SEM images confirmed a well-dispersed, fractured morphology for hydrogen uptake. Hydrogen storage capacities at 5, 10, and 15 bar showed pressure-dependent behavior, and the composite was observed to achieve a maximum capacity of 1.9 wt% at 15 bar. The interaction between GO and NaH enhances structural stability, surface accessibility, and defect density, making the NaH+GO composite a promising candidate for high-efficiency solid-state hydrogen storage applications.

References

  • M. R. Usman, Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 112743, 2022. https://doi.org/10.10 16/j.rs er.2022.112743.
  • M. Zhang, H. Lv, H. Kang, W. Zhou, C. Zhang, A literature review of failure prediction and analysis methods for hydrogen storage tanks. International Journal of Hydrogen Energy, 44, 25777–25799, 2019. https://doi.org/10.1016/j.ijhydene.2019.08.028.
  • S. Bosu, N. Rajamohan, Recent advancements in hydrogen storage—Comparative review on methods, operating conditions and challenges. International Journal of Hydrogen Energy, 52, 352–370, 2024. https://doi.org/10.1016/j.ijhydene.2023.10.005.
  • P. C. Too, G. H. Chan, Y. L. Tnay, H. Hirao, S. Chiba, Hydride reduction by NaH–iodide composite. Angewandte Chemie International Edition, 55,3719–3723, 2016. https://doi.org/10.1002/anie.201600305.
  • Y. Yürüm, A. Taralp, T. N. Veziroğlu, Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 34, 3784–3798, 2009. https://doi.org/10.10 16/j.ijhydene. 2009.03.001.
  • Y. Liu, W. Zhang, X. Zhang, L. Yang, Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance. Renewable and Sustainable Energy Reviews, 184, 113560, 2023. https://doi.org/10.1016/j.rser.2023.113560.
  • P. Adelhelm, The impact of carbon materials on the hydrogen storage properties of light metal hydrides. Journal of Materials Chemistry, 21, 2417–2427, 2011. https://doi.org/10.1039/C0JM02593C.
  • H. G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renewable and Sustainable Energy Reviews, 74, 104–109, 2017. https://doi.org/10.1016/j.rser.2017.02.052.
  • D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, Properties of graphene: A theoretical perspective. Advances in Physics, 59, 2010. https://doi.org/10.1080/00018732.2010.487978.
  • Z. Ao, S. Dou, Z. Xu, Hydrogen storage in porous graphene with Al decoration. International Journal of Hydrogen Energy, 39, 16244–16251, 2014. https://doi.org/10.1016/j.ijhydene.2014.08.013.
  • M. Kayfeci, F. Bedir, Metal Hidrür Esaslı Hidrojen Depolama Reaktör Dizaynı ve Hidrojen Şarj Basıncı Etkisinin Deneysel Olarak İncelenmesi. Isı Bilimi ve Tekniği Dergisi, 34, 83–91, 2014. https://dergipark.org.tr/tr/pub/isibted/issue/33969/375975.
  • C. H. Chen, T. Y. Chung, C. C. Shen, M. S. Yu, C. S. Tsao, G. N. Shi, Hydrogen storage performance in palladium-doped graphene/carbon composites. International Journal of Hydrogen Energy, 38, 2013. https://doi.org/10.1016/j.ijhydene.2013.01.070.
  • R. Krishna, E. Titus, O. Okhay, J. C. Gil, J. Ventura, E. V. Ramana, Rapid electrochemical synthesis of hydrogenated graphene oxide using Ni nanoparticles. International Journal of Electrochemical Science, 9, 4054–4069, 2014. https://doi.org/10.1016/S1452-3981(23)08073-2.
  • R. Zan, A. Altuntepe, Nitrogen doping of graphene by CVD. Journal of Molecular Structure, 1199, 127026, 2020. https://doi.org/10.1016/j.molstruc.2019.127026.
  • T. Marqueño, I. Osmond, P. Dalladay-Simpson, A. Hermann, R. T. Howie, High pressure study of sodium trihydride. Frontiers in Chemistry, 2024. https://doi.org/10.3389/fchem.2023.1306495.
  • T. Famprikis, H. Bouyanfif, P. Canepa, M. Zbiri, J. A. Dawson, E. Suard, Insights into the rich polymorphism of the Na⁺ ion conductor Na₃PS₄ from the perspective of variable-temperature diffraction and spectroscopy. Chemistry of Materials, 33, 5652–5667, 2021. https://doi.org/10.1021/acs.chemmater.1c01113.
  • A. Altuntepe, S. Çelik, R. Zan, Optimizing hydrogen storage and fuel cell performance using carbon-based materials: Insights into pressure and surface area effects. Hydrogen, 6, 22, 2025. https://doi.org/10.3390/hydrogen6020022.
  • S. Singh, S. W. H. Eijt, Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites. Physical Review B, 78, 224110, 2008. https://doi.org/10.1103/PhysRevB.78.224110.
  • Y. Fan, W. Li, Y. Zou, S. Liao, J. Xu, Chemical reactivity and thermal stability of nanometric alkali metal hydrides. Journal of Nanoscience and Nanotechnology, 8, 935–942, 2006. https://doi. org/10.1166/jnn.2008.033.

NaH ve GO kompozitleri ile geliştirilmiş hidrojen depolama: Yapısal, morfolojik ve spektroskopik incelemeler

Year 2025, Volume: 14 Issue: 3, 1082 - 1087, 15.07.2025
https://doi.org/10.28948/ngumuh.1681889

Abstract

Bu çalışmada, NaH ve GO'dan oluşan yeni bir kompozit malzeme hazırlanmış ve hidrojen depolama amacıyla incelenmiştir. Kompozit, bilyalı öğütme (ball milling) yöntemiyle sentezlenmiş ve Raman spektroskopisi, XRD, BET yüzey alanı ölçümleri ve SEM ile karakterize edilmiştir. Raman spektroskopisi, hidrojenleme işleminin GO matrisi içerisinde büyük yapısal kusurlar oluşturduğunu ve NaH'nin titreşim modlarında fonon kaymalarına neden olduğunu, dolayısıyla hidrojen etkileşimiyle yapısal değişimlerin meydana geldiğini ortaya koymuştur. XRD sonuçları, hidrojen absorpsiyonu sonrası kristal örgüsünde daralma ve kristalit boyutunda azalma olduğunu göstermiştir. Ayrıca, NaH'nin çevresel oksijen ve nem hassasiyetinden kaynaklı olarak NaOH ve NaO₂H₃ gibi ikincil fazlara da rastlanmıştır. BET analizine göre, kompozitin yüzey alanı 9.42 m²/g ve ortalama gözenek çapı ≤68.79 nm olarak belirlenmiştir. SEM görüntüleri, hidrojen alımı için uygun, iyi dağılmış ve kırık morfolojiyi doğrulamıştır. 5, 10 ve 15 bar basınçlarda yapılan hidrojen depolama testlerinde, basınca bağlı bir davranış gözlemlenmiş ve kompozitin 15 bar’da maksimum %1.9 ağırlıkça hidrojen depolama kapasitesine ulaştığı belirlenmiştir. GO ve NaH arasındaki sinerjik etkileşim, yapısal kararlılığı, yüzey erişilebilirliğini ve kusur yoğunluğunu artırarak, NaH+GO kompozitini yüksek verimli katı hâl hidrojen depolama uygulamaları için umut vadeden bir malzeme haline getirmiştir.

References

  • M. R. Usman, Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 112743, 2022. https://doi.org/10.10 16/j.rs er.2022.112743.
  • M. Zhang, H. Lv, H. Kang, W. Zhou, C. Zhang, A literature review of failure prediction and analysis methods for hydrogen storage tanks. International Journal of Hydrogen Energy, 44, 25777–25799, 2019. https://doi.org/10.1016/j.ijhydene.2019.08.028.
  • S. Bosu, N. Rajamohan, Recent advancements in hydrogen storage—Comparative review on methods, operating conditions and challenges. International Journal of Hydrogen Energy, 52, 352–370, 2024. https://doi.org/10.1016/j.ijhydene.2023.10.005.
  • P. C. Too, G. H. Chan, Y. L. Tnay, H. Hirao, S. Chiba, Hydride reduction by NaH–iodide composite. Angewandte Chemie International Edition, 55,3719–3723, 2016. https://doi.org/10.1002/anie.201600305.
  • Y. Yürüm, A. Taralp, T. N. Veziroğlu, Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 34, 3784–3798, 2009. https://doi.org/10.10 16/j.ijhydene. 2009.03.001.
  • Y. Liu, W. Zhang, X. Zhang, L. Yang, Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance. Renewable and Sustainable Energy Reviews, 184, 113560, 2023. https://doi.org/10.1016/j.rser.2023.113560.
  • P. Adelhelm, The impact of carbon materials on the hydrogen storage properties of light metal hydrides. Journal of Materials Chemistry, 21, 2417–2427, 2011. https://doi.org/10.1039/C0JM02593C.
  • H. G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renewable and Sustainable Energy Reviews, 74, 104–109, 2017. https://doi.org/10.1016/j.rser.2017.02.052.
  • D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, Properties of graphene: A theoretical perspective. Advances in Physics, 59, 2010. https://doi.org/10.1080/00018732.2010.487978.
  • Z. Ao, S. Dou, Z. Xu, Hydrogen storage in porous graphene with Al decoration. International Journal of Hydrogen Energy, 39, 16244–16251, 2014. https://doi.org/10.1016/j.ijhydene.2014.08.013.
  • M. Kayfeci, F. Bedir, Metal Hidrür Esaslı Hidrojen Depolama Reaktör Dizaynı ve Hidrojen Şarj Basıncı Etkisinin Deneysel Olarak İncelenmesi. Isı Bilimi ve Tekniği Dergisi, 34, 83–91, 2014. https://dergipark.org.tr/tr/pub/isibted/issue/33969/375975.
  • C. H. Chen, T. Y. Chung, C. C. Shen, M. S. Yu, C. S. Tsao, G. N. Shi, Hydrogen storage performance in palladium-doped graphene/carbon composites. International Journal of Hydrogen Energy, 38, 2013. https://doi.org/10.1016/j.ijhydene.2013.01.070.
  • R. Krishna, E. Titus, O. Okhay, J. C. Gil, J. Ventura, E. V. Ramana, Rapid electrochemical synthesis of hydrogenated graphene oxide using Ni nanoparticles. International Journal of Electrochemical Science, 9, 4054–4069, 2014. https://doi.org/10.1016/S1452-3981(23)08073-2.
  • R. Zan, A. Altuntepe, Nitrogen doping of graphene by CVD. Journal of Molecular Structure, 1199, 127026, 2020. https://doi.org/10.1016/j.molstruc.2019.127026.
  • T. Marqueño, I. Osmond, P. Dalladay-Simpson, A. Hermann, R. T. Howie, High pressure study of sodium trihydride. Frontiers in Chemistry, 2024. https://doi.org/10.3389/fchem.2023.1306495.
  • T. Famprikis, H. Bouyanfif, P. Canepa, M. Zbiri, J. A. Dawson, E. Suard, Insights into the rich polymorphism of the Na⁺ ion conductor Na₃PS₄ from the perspective of variable-temperature diffraction and spectroscopy. Chemistry of Materials, 33, 5652–5667, 2021. https://doi.org/10.1021/acs.chemmater.1c01113.
  • A. Altuntepe, S. Çelik, R. Zan, Optimizing hydrogen storage and fuel cell performance using carbon-based materials: Insights into pressure and surface area effects. Hydrogen, 6, 22, 2025. https://doi.org/10.3390/hydrogen6020022.
  • S. Singh, S. W. H. Eijt, Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites. Physical Review B, 78, 224110, 2008. https://doi.org/10.1103/PhysRevB.78.224110.
  • Y. Fan, W. Li, Y. Zou, S. Liao, J. Xu, Chemical reactivity and thermal stability of nanometric alkali metal hydrides. Journal of Nanoscience and Nanotechnology, 8, 935–942, 2006. https://doi. org/10.1166/jnn.2008.033.
There are 19 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Ali Altuntepe 0000-0002-6366-4125

Early Pub Date July 3, 2025
Publication Date July 15, 2025
Submission Date April 24, 2025
Acceptance Date June 16, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Altuntepe, A. (2025). Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 1082-1087. https://doi.org/10.28948/ngumuh.1681889
AMA Altuntepe A. Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights. NOHU J. Eng. Sci. July 2025;14(3):1082-1087. doi:10.28948/ngumuh.1681889
Chicago Altuntepe, Ali. “Enhanced Hydrogen Storage via NaH and GO Composites: Structural, Morphological and Spectroscopic Insights”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 3 (July 2025): 1082-87. https://doi.org/10.28948/ngumuh.1681889.
EndNote Altuntepe A (July 1, 2025) Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 1082–1087.
IEEE A. Altuntepe, “Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights”, NOHU J. Eng. Sci., vol. 14, no. 3, pp. 1082–1087, 2025, doi: 10.28948/ngumuh.1681889.
ISNAD Altuntepe, Ali. “Enhanced Hydrogen Storage via NaH and GO Composites: Structural, Morphological and Spectroscopic Insights”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (July2025), 1082-1087. https://doi.org/10.28948/ngumuh.1681889.
JAMA Altuntepe A. Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights. NOHU J. Eng. Sci. 2025;14:1082–1087.
MLA Altuntepe, Ali. “Enhanced Hydrogen Storage via NaH and GO Composites: Structural, Morphological and Spectroscopic Insights”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 3, 2025, pp. 1082-7, doi:10.28948/ngumuh.1681889.
Vancouver Altuntepe A. Enhanced hydrogen storage via NaH and GO composites: Structural, morphological and spectroscopic insights. NOHU J. Eng. Sci. 2025;14(3):1082-7.

download