Research Article
BibTex RIS Cite

Farklı irtifa ortam koşullarının aviyonik sistem verilerinin yer kontrol istasyonlarına iletimine etkisinin araştırılması

Year 2025, Volume: 14 Issue: 4

Abstract

Bu çalışmada, farklı irtifalardaki çevresel koşulların ve iyon iticiler tarafından oluşturulan elektromanyetik alanların aviyonik sistem ile yer kontrol istasyonuna veri iletimi üzerindeki etkileri incelenmiştir. Uzay araçlarında ana itici ya da yan kuvvet üreteci olarak kullanılan iyon iticiler, yüksek gerilimle çalışmaları ve karakteristik özellikleri nedeniyle belirli bir elektromanyetik alan oluştururlar. Uçak ya da uzay araçlarının veri iletimini etkileyebilecek diğer değişkenler ise sıcaklık ve basınçtır. Bahsedilen bu değerler atmosferik koşullara bağlı olarak değişkenlik göstermekte olup, bu çalışma kapsamında 101 kPa ile 50 kPa arasında basınç değerleri ve 25°C ile -15°C arasında sıcaklık değerleri değişken parametreler olarak belirlenmiştir. İstenilen sıcaklık ve basınç değerlerinde uzay ortamının simüle edilebilmesi amacıyla vakum kutusu kullanılmıştır. Ayrıca, iyon iticinin farklı gerilim ve uyarma frekanslarında çalıştırılması durumunda aviyonik sisteme olan etkisi, bu iticinin vakum odasında farklı uzaklıklara yerleştirilmesiyle analiz edilmiştir. Aviyonik sistem, tüm deneysel durumlar için yer kontrol istasyonuna veri iletimi gerçekleştirmiştir.

Project Number

This article is supported Scientific and Technological Research Council of Turkey - Grant No. 1919B012204134 with 2209-A - Research Project Support Programme for Undergraduate Students

References

  • P.R.K. Chetty, Satellite Technology and Its Applications. Notion Press, 3rd Edition, 2023.
  • A. Aanesland, A. Meige, and P. Chabert, Electric propulsion using ion-ion plasmas. Journal of Physics: Conference Series, 162, 012009, 2009. https://doi.org/ 10.1088/1742-6596/162/1/012009
  • R.H. Johnson, L.D. Montierth, J.R. Dennison, J.S. Dyer, and E.R. Lindstrom, Small-scale simulation chamber for space environment survivability testing. IEEE Trans. Plasma Sci., 41 (12), 3453-58, 2013. https://doi .org/10.1109/TPS.2013.2281399
  • S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. T., 25 (3), 033002, 2016. https://doi.org/10.1088/0963-0252/25/3/033002
  • D.M. Goebel, I. Katz, and I.G. Mikellides, Fundamentals of Electric Propulsion. 2nd Edition, John Wiley & Sons Inc., 2024. https://doi.org/10.1002/9780470436448
  • E.Y. Choueiri, Plasma oscillations in Hall thrusters. Phys. Plasmas, 8 (4), 1411-26, 2001. https://doi.org/10.1063/ 1.1354644
  • V.Y. Khomich, V.E. Malanichev, and I.E. Rebrov, Electrohydrodynamic thruster for near-space applications. Acta Astronaut., 180, 141-148, 2021. https://doi.org/10.1016/j.actaastro.2020.12.002
  • A. Seltenhammer and Z. Zhang, Investigation on horizontal asymmetries in plasma plume of a pulsed plasma thruster. J. Phys. D: Appl. Phys., 58, 185203, 2025. https://doi.org/ 10.1088/1361-6463/adc3a6
  • B. Ferrell, B. and S. Over, Avionics hardware design for testability. Digital Avionics Systems Conference, no.84-2708, 498-502, 1984. https://doi.org/10.2514/6. 1984-2708
  • Z. Changlin, Z. Zhan, Q. Xuebing, Y. Hongtao, and Z. Weidong, Research on the electromagnetic environment effect on wireless communication systems. 8th International Symposium on Antennas, Propagation and EM Theory, 1478-81, 2008. https://doi.org/10.1109/ISAPE.2008.4735510
  • X.Y. Ji, Y.Z Li, J. Wang, X.N. Yang, Y.Q. Bi, Z.S. Cao, X.Y. Li, and G.Q. Liu, An integrated tailoring model for thermal cycling tests of spacecraft electronics. IEEE Trans. Aerosp Electron. Syst., 52 (6), 2685-96, 2016. https://doi.org/10.1109/TAES .2016.150525
  • G.G. Karady, M.D. Sirkis, and J.R. Oliva, Degrading effect of high-altitude corona on electronic circuit boards. IEEE Trans. Electr. Insul., 26 (6), 1216-19, 1991. https://doi.org/10.1109/14.10 8161
  • C. Lide and S. Glista, An Avionics Integrity Program Approach to Preventing Aircraft Electronics Humidity and Moisture Problems. In ASME International Mechanical Engineering Congress and Exposition, 43789, 341-353, 2009. https://doi.org/10.1115/imece2 009-10532
  • Ü. Kaya, and H.K. Odabaşı, Electromagnetic interference shielding with thermoplastic polyurethane composites. Int. J. Aeronaut. Astronaut., 5 (1), 23-36, 2024. https://doi.org/10.552 12/ijaa.1479997
  • A. Pamuk and U. Sakarya, A Review on the Possibility of Using The Video Data Bus Standard In Aviation For Smart Vehicles. J. Aviat., 11 (1), 300-311, 2022. https://doi.org/10.36306/konjes.1205746
  • S.J. Kim, I.H. Seong, Y.S. Lee, C.H. Cho, W.N. Jeong, Y.B. You, J.J. Lee, and S.J. You, Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sens., 22 (15), 5871 (1-16), 2022. https://doi.org/10.3390/s22155871
  • I. Umakoğlu, D. Keskin, and C. Pense, Akıllı Ulaşım Sistemleri için LoRa Tabanlı Telemetri Veri Aktarım sistemi tasarımı. J. Intell. Transp., 7 (2), 2015-241, 2024. https ://doi.org/10.51513/jitsa.1541448
  • A.P. Plokhikh, N.A. Vazhenin, and G.A. Popov, Analysis of the Influence of Electromagnetic Emission from Stationary Plasma Thrusters on the Interference Immunity of the Earth–Spacecraft Communication Channel. Cos. Res., 57, 317-324, 2019. https ://doi.org/10.1134/S0010952519050071
  • G. Callebaut, G. Leenders, C. Buyle, S. Crul, L.V. Perre, LoRa Physical Layer Evaluation for Point-to-Point Links and Coverage Measurements in Diverse Environments. Electrical Engineering and Systems Science: Signal Processing, arXiv:1909.08300, 2019. https://doi.org/10.48550/arXiv.1909.08300
  • D. Tamang, A. Pozzebon, L. Parri, A. Fort, A. Abrardo, Designing a reliable and low-latency LoRaWAN solution for environmental monitoring in factories at major accident risk. Electrical Engineering and Systems Science: Signal Processing, arXiv:2202.0 8742, 2022. https://doi.org/10.48550/arX iv.2202.087 42

Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations

Year 2025, Volume: 14 Issue: 4

Abstract

In this study, the effects of environmental conditions at different altitudes and electromagnetic fields generated by ion thrusters on the avionic system and data transfer to the ground control station were investigated. Ion thrusters, which are used as main thrusters or side force generators in space vehicles, generate a certain electromagnetic field due to their high voltage operation and characteristic features. Other variables that pose a risk of affecting aircraft or spacecraft's data transmission are temperature and pressure. The mentioned values vary under different atmospheric conditions and within the scope of this study; pressure values between 101 kPa and 50 kPa and temperature values between 25°C and -15°C were determined as variable parameters. In order to simulate space environment for the desired temperature and pressure values, a vacuum box was used. Furthermore, the influence of the ion thruster, operated under varying voltages and excitation frequencies, was analyzed by positioning it at different distances within the vacuum chamber containing the avionics system. The avionic system send data to the ground control station for all experimental cases.

Supporting Institution

This article is supported Scientific and Technological Research Council of Turkey - Grant No. 1919B012204134 with 2209-A - Research Project Support Programme for Undergraduate Students

Project Number

This article is supported Scientific and Technological Research Council of Turkey - Grant No. 1919B012204134 with 2209-A - Research Project Support Programme for Undergraduate Students

References

  • P.R.K. Chetty, Satellite Technology and Its Applications. Notion Press, 3rd Edition, 2023.
  • A. Aanesland, A. Meige, and P. Chabert, Electric propulsion using ion-ion plasmas. Journal of Physics: Conference Series, 162, 012009, 2009. https://doi.org/ 10.1088/1742-6596/162/1/012009
  • R.H. Johnson, L.D. Montierth, J.R. Dennison, J.S. Dyer, and E.R. Lindstrom, Small-scale simulation chamber for space environment survivability testing. IEEE Trans. Plasma Sci., 41 (12), 3453-58, 2013. https://doi .org/10.1109/TPS.2013.2281399
  • S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. T., 25 (3), 033002, 2016. https://doi.org/10.1088/0963-0252/25/3/033002
  • D.M. Goebel, I. Katz, and I.G. Mikellides, Fundamentals of Electric Propulsion. 2nd Edition, John Wiley & Sons Inc., 2024. https://doi.org/10.1002/9780470436448
  • E.Y. Choueiri, Plasma oscillations in Hall thrusters. Phys. Plasmas, 8 (4), 1411-26, 2001. https://doi.org/10.1063/ 1.1354644
  • V.Y. Khomich, V.E. Malanichev, and I.E. Rebrov, Electrohydrodynamic thruster for near-space applications. Acta Astronaut., 180, 141-148, 2021. https://doi.org/10.1016/j.actaastro.2020.12.002
  • A. Seltenhammer and Z. Zhang, Investigation on horizontal asymmetries in plasma plume of a pulsed plasma thruster. J. Phys. D: Appl. Phys., 58, 185203, 2025. https://doi.org/ 10.1088/1361-6463/adc3a6
  • B. Ferrell, B. and S. Over, Avionics hardware design for testability. Digital Avionics Systems Conference, no.84-2708, 498-502, 1984. https://doi.org/10.2514/6. 1984-2708
  • Z. Changlin, Z. Zhan, Q. Xuebing, Y. Hongtao, and Z. Weidong, Research on the electromagnetic environment effect on wireless communication systems. 8th International Symposium on Antennas, Propagation and EM Theory, 1478-81, 2008. https://doi.org/10.1109/ISAPE.2008.4735510
  • X.Y. Ji, Y.Z Li, J. Wang, X.N. Yang, Y.Q. Bi, Z.S. Cao, X.Y. Li, and G.Q. Liu, An integrated tailoring model for thermal cycling tests of spacecraft electronics. IEEE Trans. Aerosp Electron. Syst., 52 (6), 2685-96, 2016. https://doi.org/10.1109/TAES .2016.150525
  • G.G. Karady, M.D. Sirkis, and J.R. Oliva, Degrading effect of high-altitude corona on electronic circuit boards. IEEE Trans. Electr. Insul., 26 (6), 1216-19, 1991. https://doi.org/10.1109/14.10 8161
  • C. Lide and S. Glista, An Avionics Integrity Program Approach to Preventing Aircraft Electronics Humidity and Moisture Problems. In ASME International Mechanical Engineering Congress and Exposition, 43789, 341-353, 2009. https://doi.org/10.1115/imece2 009-10532
  • Ü. Kaya, and H.K. Odabaşı, Electromagnetic interference shielding with thermoplastic polyurethane composites. Int. J. Aeronaut. Astronaut., 5 (1), 23-36, 2024. https://doi.org/10.552 12/ijaa.1479997
  • A. Pamuk and U. Sakarya, A Review on the Possibility of Using The Video Data Bus Standard In Aviation For Smart Vehicles. J. Aviat., 11 (1), 300-311, 2022. https://doi.org/10.36306/konjes.1205746
  • S.J. Kim, I.H. Seong, Y.S. Lee, C.H. Cho, W.N. Jeong, Y.B. You, J.J. Lee, and S.J. You, Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sens., 22 (15), 5871 (1-16), 2022. https://doi.org/10.3390/s22155871
  • I. Umakoğlu, D. Keskin, and C. Pense, Akıllı Ulaşım Sistemleri için LoRa Tabanlı Telemetri Veri Aktarım sistemi tasarımı. J. Intell. Transp., 7 (2), 2015-241, 2024. https ://doi.org/10.51513/jitsa.1541448
  • A.P. Plokhikh, N.A. Vazhenin, and G.A. Popov, Analysis of the Influence of Electromagnetic Emission from Stationary Plasma Thrusters on the Interference Immunity of the Earth–Spacecraft Communication Channel. Cos. Res., 57, 317-324, 2019. https ://doi.org/10.1134/S0010952519050071
  • G. Callebaut, G. Leenders, C. Buyle, S. Crul, L.V. Perre, LoRa Physical Layer Evaluation for Point-to-Point Links and Coverage Measurements in Diverse Environments. Electrical Engineering and Systems Science: Signal Processing, arXiv:1909.08300, 2019. https://doi.org/10.48550/arXiv.1909.08300
  • D. Tamang, A. Pozzebon, L. Parri, A. Fort, A. Abrardo, Designing a reliable and low-latency LoRaWAN solution for environmental monitoring in factories at major accident risk. Electrical Engineering and Systems Science: Signal Processing, arXiv:2202.0 8742, 2022. https://doi.org/10.48550/arX iv.2202.087 42
There are 20 citations in total.

Details

Primary Language English
Subjects Avionics, Aerospace Engineering (Other)
Journal Section Articles
Authors

İbrahim Doğruer 0009-0002-2554-6109

Abdulkadir Mete 0009-0009-0354-9908

Emirhan Yesirci 0009-0004-7582-8766

Hürrem Akbıyık 0000-0002-1880-052X

Project Number This article is supported Scientific and Technological Research Council of Turkey - Grant No. 1919B012204134 with 2209-A - Research Project Support Programme for Undergraduate Students
Early Pub Date October 13, 2025
Publication Date October 14, 2025
Submission Date November 4, 2024
Acceptance Date August 29, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Doğruer, İ., Mete, A., Yesirci, E., Akbıyık, H. (2025). Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Doğruer İ, Mete A, Yesirci E, Akbıyık H. Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations. NOHU J. Eng. Sci. October 2025;14(4).
Chicago Doğruer, İbrahim, Abdulkadir Mete, Emirhan Yesirci, and Hürrem Akbıyık. “Investigation of the Effect of Different Altitude Environmental Conditions on the Transmission of Avionics System Data to Ground Control Stations”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025).
EndNote Doğruer İ, Mete A, Yesirci E, Akbıyık H (October 1, 2025) Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE İ. Doğruer, A. Mete, E. Yesirci, and H. Akbıyık, “Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Doğruer, İbrahim et al. “Investigation of the Effect of Different Altitude Environmental Conditions on the Transmission of Avionics System Data to Ground Control Stations”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025).
JAMA Doğruer İ, Mete A, Yesirci E, Akbıyık H. Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations. NOHU J. Eng. Sci. 2025;14.
MLA Doğruer, İbrahim et al. “Investigation of the Effect of Different Altitude Environmental Conditions on the Transmission of Avionics System Data to Ground Control Stations”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Doğruer İ, Mete A, Yesirci E, Akbıyık H. Investigation of the effect of different altitude environmental conditions on the transmission of avionics system data to ground control stations. NOHU J. Eng. Sci. 2025;14(4).

download