Research Article
BibTex RIS Cite

Effect of thermal damage on brittleness and chemical properties of sandstone

Year 2025, Volume: 14 Issue: 4

Abstract

Mine fires may cause many ground collapses that threaten the safety of the underground coal mining applications due to the coal meassure rocks exposed to varying heat. This research focuses on investigating the changes in thermal damage and brittleness properties of sandstone from the Zonguldak Coal Basin at temperatures ranging from 25 to 600°C. In the determination of rock brittleness, five different approaches calculated depending on the strength parameters were considered. According to the findings of this study, statistical analysis (regression analysis) were revealed over 0.85 between rock thermal damage (Dt) and rock brittleness of sandstone. Moreover, new estimation models have also been developed that can predict the brittleness properties from the thermal damages of the thermally exposed sandstone. On the other hand the chemical composition of the rocks can be used to determine the thermal damage and thus the brittleness. In this context, a negative linear relationship was obtained between Dt and Al2O3, while a positive linear relationship was obtained between Na2O and SiO2.

Thanks

The author gratefully acknowledges Assistant Professor Gurkan Bacak (Zonguldak Bülent Ecevit University) for conducting the petrographic analysis of the thin sections.

References

  • X. Xu, C. Yue, L. Xu, Thermal damage constitutive model and brittleness index based on energy dissipation for deep Rock, Mathematics. 10, 1–16, 2022. https://doi .org/10.3390/math10030410.
  • T. Yin, J. Ma, Y. Wu, D.D. Zhuang, Z. Yang, Effect of high temperature on the brittleness index of granite: an experimental investigation, Bulletin of Engineering Geology and the Environment. 81, 2022. https://doi. org/10.1007/s10064-022-02953-z.
  • S. Ge, B. Shi, S. Zhang, X. Zhai, C. Wu, Thermal damage and mechanical properties of high temperature sandstone with cyclic heating–cooling treatment, Bulletin of Engineering Geology and the Environment. 81, 2022. https://doi.org/10.1007/s10064-022-02781-1.
  • S. Chaki, M. Takarli, W.P. Agbodjan, Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions, Construction and Building Materials. 22, 1456–1461,2008. https://doi.org/10.1016/j.conbuildm at.2007. 04.002.
  • S. Chen, C. Yang, G. Wang, Evolution of thermal damage and permeability of Beishan granite, Applied Thermal Engineering. 110, 1533–1542, 2017. https:// doi.org/10.1016/j.applthermaleng.2016.09.075.
  • B. Dehghani, V. Amirkiyaei, R. Ebrahimi, H. Ahmadi, D. Mohammadzamani, S.B. Zavareh, Thermal loading effect on P-wave form and power spectral density in crystalline and non-crystalline rocks, Arabian Journal of Geosciences. 13, 2020. https://doi.org/10.1007/s125 17-020-05779-9.
  • P.K. Gautam, M.K. Jha, A.K. Verma, T.N. Singh, Evolution of absorption energy per unit thickness of damaged sandstone, Journal of Thermal Analysis and Calorimetry. 136, 2305–2318, 2019. https://doi.org/10. 1007/s10973-018-7884-5.
  • W.S. González-Gómez, P. Quintana, A. May-Pat, F. Avilés, J. May-Crespo, J.J. Alvarado-Gil, Thermal effects on the physical properties of limestones from the Yucatan Peninsula, International Journal of Rock Mechanics and Mining Sciences. 75, 182–189, 2015. https://doi.org/10.1016/j.ijrmms.2014.12.010.
  • J. Hao, L. Qiao, Z. Liu, Q. Li, Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study, Acta Geotechnica. 8, 2022. https:// doi.org/10.1007/s11440-022-01514-8.
  • S. Huang, K. Xia, Effect of heat-treatment on the dynamic compressive strength of Longyou sandstone, Engineering Geology. 191, 1–7, 2015. https://doi.org/ 10.1016/j.enggeo.2015.03.007.
  • F. Kang, T. Jia, Y. Li, J. Deng, C. Tang, X. Huang, Experimental study on the physical and mechanical variations of hot granite under different cooling treatments, Renewable Energy. 179, 1316–1328, 2021. https://doi.org/10.1016/j.renene.2021.07.132.
  • M. Keppert, J. Fořt, A. Trník, D. Koňáková, E. Vejmelková, J. Pokorný, P. Svora, Z. Pavlík, R. Černý, Behavior of Sandstones Under Heat Treatment, International Journal of Thermophysics. 38, 2017. https ://doi.org/10.1007/s10765-017-2191-0.
  • W.G. Liang, S.G. Xu, Y.S. Zhao, Experimental study of temperature effects on physical and mechanical characteristics of salt rock, Rock Mechanics and Rock Engineering. 39, 469–482, 2006. https://doi.org/10.10 07/s00603-005-0067-2.
  • S. Liu, J. Xu, An experimental study on the physico-mechanical properties of two post-high-temperature rocks, Engineering Geology. 185, 63–70, 2015. https:// doi.org/10.1016/j.enggeo.2014.11.013.
  • M. Li, X. Liu, Effect of Thermal Treatment on the Physical and Mechanical Properties of Sandstone: Insights from Experiments and Simulations, Rock Mechanics and Rock Engineering. 2022. https://doi. org/10.1007/s00603-022-02791-1.
  • X. Liu, W. Lu, M. Li, N. Zeng, T. Li, The thermal effect on the physical properties and corresponding permeability evolution of the heat-treated sandstones, Geofluids. 2020. https://doi.org/10.1155/2020/883832 5.
  • A. Ozguven, Y. Ozcelik, Effects of high temperature on physico-mechanical properties of Turkish natural building stones, Engineering Geology. 183, 127–136, 2014. https://doi.org/10.1016/j.enggeo.2014.10.006.
  • N. Sengun, Influence of thermal damage on the physical and mechanical properties of carbonate rocks, Arabian Journal of Geosciences. 7, 5543–5551, 2014. https://doi.org/10.1007/s12517-013-1177-x.
  • N.N. Sirdesai, T.N. Singh, P.G. Ranjith, Thermal alterations in the poro-mechanical characteristic of an Indian sandstone – A comparative study, Engineering Geology. 226, 208–220, 2017. https://doi.org/10.1016/ j.enggeo.2017.06.010.
  • Q. Sun, C. Lü, L. Cao, W. Li, J. Geng, W. Zhang, Thermal properties of sandstone after treatment at high temperature, 2016. https://doi.org/10.1016/j.ijrmms.20 16.03.006.
  • W. Xiao, D. Zhang, H. Yang, B. Yu, S. Li, Evaluation and analysis of sandstone brittleness under the influence of temperature, Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 8, 1–19, 2022. https://doi.org/10.1007/s40948-021-00324-8.
  • S.Q. Yang, P.G. Ranjith, H.W. Jing, W.L. Tian, Y. Ju, An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments, Geothermics. 65, 180–197,2017. https://doi.org/10.1016/j.geothermics.2 016.09.008.
  • H. Yavuz, S. Demirdag, S. Caran, Thermal effect on the physical properties of carbonate rocks, International Journal of Rock Mechanics and Mining Sciences. 47, 94–103, 2010. https://doi.org/10.1016/j.ijrmms.2009.0 9.014.
  • H. Ersoy, H. Kolaylı, M. Karahan, H. Harputlu Karahan, M.O. Sünnetci, Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures, Bulletin of Engineering Geology and the Environment. 78, 1515–1525, 2019. https://doi.org/10.1007/s10064-017-1208-z.
  • U. Sakız, Invesitgation of the thermo physico ‑ mechanical and drilling characteristics of sandstone in Zonguldak hard coal basin, Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 5 2023. https://doi.org/10.1007/s40948-023-00682-5.
  • H. Somerton, W, Thermal Properties and Temperature-Related Behavior of Rock/ Fluid Systems., 1992.
  • M. Hajpál, Changes in sandstones of historical monuments exposed to fire or high temperature, Fire Technology. 38, 373–382, 2002. https://doi.org/10.10 23/A:1020174500861.
  • N.I. Den’gina, V.N. Kazak, V. V. Pristash, Changes in rocks at high temperatures, Journal of Mining Science. 29, 472–477, 1993. https://doi.org/10.1007/BF007330 26.
  • N.N. Sirdesai, A. Singh, L.K. Sharma, R. Singh, T.N. Singh, Determination of thermal damage in rock specimen using intelligent techniques, Engineering Geology. 239, 179–194, 2018. https://doi.org/10.1016/ j.enggeo.2018.03.027.
  • B. Shi, H. Su, J. Li, H. Qi, F. Zhou, J.L. Torero, Z. Chen, Clean power generation from the intractable natural coalfield fires: Turn harm into benefit, Scientific Reports. 7, 1–5, 2017. https://doi.org/10.10 38/s41598-017-05622-4.
  • J. Deng, F. Zhou, B. Shi, J.L. Torero, H. Qi, P. Liu, S. Ge, Z. Wang, C. Chen, Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China, Energy. 207, 2020. https://doi.org/10.1016/j.energy.20 20.118303.
  • N.N. Sirdesai, R. Singh, T.N. Singh, P.G. Ranjith, Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project, Proceedings of the International Association of Hydrological Sciences. 372, 455–462, 2015. https://doi.org/10.5194/piahs-372-455-2015.
  • X. Liu, G. Guo, H. Li, Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters, Results in Physics. 12, 1956–1963, 2019. https://doi.org/10.1016/j.rinp.2019. 02.006.
  • X. Wu, Z. Huang, H. Song, S. Zhang, Z. Cheng, R. Li, H. Wen, P. Huang, X. Dai, Variations of Physical and Mechanical Properties of Heated Granite After Rapid Cooling with Liquid Nitrogen, Rock Mechanics and Rock Engineering. 52, 2123–2139, 2019. https://doi. org/10.1007/s00603-018-1727-3.
  • Y.J. Shen, Y.L. Zhang, F. Gao, G.S. Yang, X.P. Lai, Influence of temperature on the microstructure deterioration of sandstone, Energies. 11, 1–17, 2018. https://doi.org/10.3390/en11071753.
  • Q. Sun, J. Geng, F. Zhao, Experiment study of physical and mechanical properties of sandstone after variable thermal cycles, Bulletin of Engineering Geology and the Environment. 79, 3771–3784, 2020. https://doi.org /10.1007/s10064-020-01779-x.
  • B. Mahanta, P.G. Ranjith, V. Vishal, T.N. Singh, Temperature-induced deformational responses and microstructural alteration of sandstone, Journal of Petroleum Science and Engineering. 192, 107239, 2020. https://doi.org/10.1016/j.petrol.2020.107239.
  • C. Lü, Q. Sun, W. Zhang, J. Geng, Y. Qi, L. Lu, The effect of high temperature on tensile strength of sandstone, Applied Thermal Engineering. 111, 573–579, 2017. https://doi.org/10.1016/j.applthermaleng.2 016.09.151.
  • H. Tian, T. Kempka, S. Yu, M. Ziegler, Mechanical Properties of Sandstones Exposed to High Temperature, Rock Mechanics and Rock Engineering. 49, 321–327, 2016. https://doi.org/10.1007/s00603-0 15-0724-z.
  • S. Vidana Pathiranagei, I. Gratchev, Engineering properties of sandstone heated to a range of high temperatures, Bulletin of Engineering Geology and the Environment. 80, 2415–2432, 2021. https://doi.org/10 .1007/s10064-020-02065-6.
  • M. Li, D. Wang, Z. Shao, Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance, Engineering Geology. 275, 105739,2020. https://doi.org/10.1016/j.enggeo.20 20.105739.
  • B. Kong, E. Wang, Z. Li, X. Wang, X. Liu, N. Li, Y. Yang, Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment, Engineering Geology. 209, 82–92, 2016. https://doi.or g/10.1016/j.enggeo.2016.05.009.
  • Y. Zhang, X.T. Feng, C. Yang, Q. Han, Z. Wang, R. Kong, Evaluation Method of Rock Brittleness under True Triaxial Stress States Based on Pre-peak Deformation Characteristic and Post-peak Energy Evolution, Rock Mechanics and Rock Engineering. 54, 1277–1291, 2021. https://doi.org/10.1007/s00603-020-02330-w.
  • S. Yagiz, J. Rostami, Indentation test for the measurement of rock brittleness, 46th US Rock Mechanics / Geomechanics Symposium 2012. 1, 511–516, 2012.
  • Y. Xia, H. Zhou, C. Zhang, S. He, Y. Gao, P. Wang, The evaluation of rock brittleness and its application : a review study, European Journal of Environmental and Civil Engineering. 1–41, 2019. https://doi.org/10.1080/ 19648189.2019.1655485.
  • U. Sakız, Predicting the brittleness of sandstones from the Leeb hardness test, Petroleum Science and Technology. 42 (11), 1360-1384, 2024. https://doi.org /10.1080/10916466.2022.2143810
  • S. Yagiz, C. Gokceoglu, Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness, Expert Systems with Applications. 37, 2265–2272, 2010. https://doi.org/10.1016/j.eswa.2009 .07.046.
  • F. Meng, L.N.Y. Wong, H. Zhou, Rock brittleness indices and their applications to different fields of rock engineering: A review, Journal of Rock Mechanics and Geotechnical Engineering. 13, 221–247, 2021. https:// doi.org/10.1016/j.jrmge.2020.06.008.
  • M.M. Protodyakonov, Mechanical properties and drillability of rocks. In Proceedings of the fifth symposium rock mechanics, University of Minnesota USA. 1962.
  • V. Hucka, B. Das, Brittleness determination of rocks by different methods, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 11, 389–92, 1974.
  • E.A. Goerge, Brittle failure ofrock material-test results and constitutive models, AA Balkema/Rotterdam/Brolkfield. 123–8, 1995.
  • F. Dahl, DRI, BWI, CLI standards, NTNU. 20, 2003.
  • S. Yagiz, Assessment of brittleness using rock strength and density with punch penetration test, Tunnelling and Underground Space Technology. 24, 66–74, 2009. https://doi.org/10.1016/j.tust.2008.04.002.
  • R. Altindag, Correlation of specific energy with rock brittleness concepts on rock cutting, Journal of The South African Institute of Mining and Metallurgy. 103, 163–171, 2003.
  • R. Altindag, Assessment of some brittleness indexes in rock-drilling efficiency, Rock Mechanics and Rock Engineering. 43, 361–370, 2010. https://doi.org/10.10 07/s00603-009-0057-x.
  • O. Yarali, S. Kahraman, The drillability assessment of rocks using the different brittleness values, Tunnelling and Underground Space Technology. 26, 406–414, 2011. https://doi.org/10.1016/j.tust.2010.11.013.
  • M.K. Özfirat, H. Yenice, F. Şimşir, O. Yarali, A new approach to rock brittleness and its usability at prediction of drillability, Journal of African Earth Sciences. 119, 94–101, 2016. https://doi.org/10.1016/j. jafrearsci.2016.03.017.
  • S. Sha, G. Rong, J. Tan, R. He, B. Li, Tensile strength and brittleness of sandstone and granite after high-temperature treatment: a review, Arabian Journal of Geosciences. 13, 2020. https://doi.org/10.1007/s12517 -020-05647-6.
  • D.M. Jarvie, R.J. Hill, T.E. Ruble, R.M. Pollastro, Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment, American Association of Petroleum Geologists Bulletin. 91, 475–499, 2007. https://doi.org/10.1306/12190606068.
  • X. Li, K. Peng, J. Peng, D. Hou, Effect of thermal damage on mechanical behavior of a fine-grained sandstone, Arabian Journal of Geosciences. 14, 2021. https://doi.org/10.1007/s12517-021-07607-0.
  • V. Srinivasan, A. Tripathy, T. Gupta, T.N. Singh, An Investigation on the Influence of Thermal Damage on the Physical, Mechanical and Acoustic Behavior of Indian Gondwana Shale, Rock Mechanics and Rock Engineering. 53, 2865–2885, 2020. https://doi.org/10 .1007/s00603-020-02087-2.
  • D. Wang, F. Zhou, Y. Dong, D. Sun, B. Yu, Experimental Investigation of Thermal Effect on Fracability Index of Geothermal Reservoirs, Natural Resources Research. 30, 273–288, 2021. https://doi .org/10.1007/s11053-020-09733-0.
  • ISRM, The complete ISRM suggested methods for rock characterization,testing and monitoring: 1974–2006, 2007.
  • T. Hueckel, A. Peano, R. Pellegrini, A constitutive law for thermo-plastic behaviour of rocks: an analogy with clays, Surveys in Geophysics. 15, 643–671, 1994. https://doi.org/10.1007/BF00690178.
  • H. Tian, M. Ziegler, T. Kempka, Physical and mechanical behavior of claystone exposed to temperatures up to 1000°C, International Journal of Rock Mechanics and Mining Sciences. 70, 144–153, 2014. https://doi.org/10.1016/j.ijrmms.2014.04.014.
  • H. Tian, G. Mei, G.S. Jiang, Y. Qin, High-Temperature Influence on Mechanical Properties of Diorite, Rock Mechanics and Rock Engineering. 50, 1661–1666, 2017. https://doi.org/10.1007/s00603-017-1185-3.
  • X. biao MAO, L. ying ZHANG, T. zhen LI, H. shun LIU, Properties of failure mode and thermal damage for limestone at high temperature, Mining Science and Technology. 19, 290–294, 2009. https://doi.org/10.10 16/S1674-5264(09)60054-5.
  • Q. Liu, Z. Qian, Z. Wu, Micro/macro physical and mechanical variation of red sandstone subjected to cyclic heating and cooling: an experimental study, Bulletin of Engineering Geology and the Environment. 78, 1485–1499, 2019. https://doi.org/10.1007/s10064-017-1196-z.
  • C. Bilen, A new approach for the prediction of brittleness index based on chemical properties of basaltic rocks, Acta Geodynamica et Geomaterialia. 18, 285–299, 2021. https://doi.org/10.13168/agg.2021.002 0.
  • X. Wu, Z. Huang, Z. Cheng, S. Zhang, H. Song, X. Zhao, Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite, Applied Thermal Engineering. 156, 99–110, 2019. https://doi. org/10.1016/j.applthermaleng.2019.04.046.

Termal hasarın kumtaşının kırılganlık ve kimyasal özellikleri üzerindeki etkisi

Year 2025, Volume: 14 Issue: 4

Abstract

Maden yangınları, değişen ısıya maruz kalan kömür çevre kayaçlarında birçok zemin çökmesine neden olabilmekte ve bu durum yeraltı kömür madenciliği uygulamalarının güvenliğini tehdit etmektedir. Bu araştırma, oda sıcaklığından 600°C'ye kadar değişen sıcaklıklarda Zonguldak Kömür Havzası'ndan elde edilen kumtaşının termal hasar ve kırılganlık özelliklerindeki değişiklikleri incelemeye odaklanmaktadır. Kayaç kırılganlığının belirlenmesinde, dayanım parametrelerine bağlı olarak hesaplanan beş farklı yaklaşım dikkate alınmıştır. Bu çalışmanın bulgularına dayanarak, istatistiksel analiz (regresyon analizi), kaya termal hasarı (Dt) ile kumtaşının kaya kırılganlığı arasında 0,85'in üzerinde bir ilişki olduğunu ortaya koymuştur. Ayrıca, termal olarak maruz kalan kumtaşının termal hasarlarından kırılganlık özelliklerini tahmin edebilen yeni tahmin modelleri de geliştirilmiştir. Öte yandan, kayaçların kimyasal bileşimlerinin termal hasarın ve dolayısıyla kırılganlığı belirlenmesinde kullanılabileceği belirlenmiştir. Bu bağlamda, Dt ile Al2O3 arasında negatif doğrusal bir ilişki elde edilirken, Na2O ile SiO2 arasında pozitif doğrusal bir ilişki elde edilmiştir.

References

  • X. Xu, C. Yue, L. Xu, Thermal damage constitutive model and brittleness index based on energy dissipation for deep Rock, Mathematics. 10, 1–16, 2022. https://doi .org/10.3390/math10030410.
  • T. Yin, J. Ma, Y. Wu, D.D. Zhuang, Z. Yang, Effect of high temperature on the brittleness index of granite: an experimental investigation, Bulletin of Engineering Geology and the Environment. 81, 2022. https://doi. org/10.1007/s10064-022-02953-z.
  • S. Ge, B. Shi, S. Zhang, X. Zhai, C. Wu, Thermal damage and mechanical properties of high temperature sandstone with cyclic heating–cooling treatment, Bulletin of Engineering Geology and the Environment. 81, 2022. https://doi.org/10.1007/s10064-022-02781-1.
  • S. Chaki, M. Takarli, W.P. Agbodjan, Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions, Construction and Building Materials. 22, 1456–1461,2008. https://doi.org/10.1016/j.conbuildm at.2007. 04.002.
  • S. Chen, C. Yang, G. Wang, Evolution of thermal damage and permeability of Beishan granite, Applied Thermal Engineering. 110, 1533–1542, 2017. https:// doi.org/10.1016/j.applthermaleng.2016.09.075.
  • B. Dehghani, V. Amirkiyaei, R. Ebrahimi, H. Ahmadi, D. Mohammadzamani, S.B. Zavareh, Thermal loading effect on P-wave form and power spectral density in crystalline and non-crystalline rocks, Arabian Journal of Geosciences. 13, 2020. https://doi.org/10.1007/s125 17-020-05779-9.
  • P.K. Gautam, M.K. Jha, A.K. Verma, T.N. Singh, Evolution of absorption energy per unit thickness of damaged sandstone, Journal of Thermal Analysis and Calorimetry. 136, 2305–2318, 2019. https://doi.org/10. 1007/s10973-018-7884-5.
  • W.S. González-Gómez, P. Quintana, A. May-Pat, F. Avilés, J. May-Crespo, J.J. Alvarado-Gil, Thermal effects on the physical properties of limestones from the Yucatan Peninsula, International Journal of Rock Mechanics and Mining Sciences. 75, 182–189, 2015. https://doi.org/10.1016/j.ijrmms.2014.12.010.
  • J. Hao, L. Qiao, Z. Liu, Q. Li, Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study, Acta Geotechnica. 8, 2022. https:// doi.org/10.1007/s11440-022-01514-8.
  • S. Huang, K. Xia, Effect of heat-treatment on the dynamic compressive strength of Longyou sandstone, Engineering Geology. 191, 1–7, 2015. https://doi.org/ 10.1016/j.enggeo.2015.03.007.
  • F. Kang, T. Jia, Y. Li, J. Deng, C. Tang, X. Huang, Experimental study on the physical and mechanical variations of hot granite under different cooling treatments, Renewable Energy. 179, 1316–1328, 2021. https://doi.org/10.1016/j.renene.2021.07.132.
  • M. Keppert, J. Fořt, A. Trník, D. Koňáková, E. Vejmelková, J. Pokorný, P. Svora, Z. Pavlík, R. Černý, Behavior of Sandstones Under Heat Treatment, International Journal of Thermophysics. 38, 2017. https ://doi.org/10.1007/s10765-017-2191-0.
  • W.G. Liang, S.G. Xu, Y.S. Zhao, Experimental study of temperature effects on physical and mechanical characteristics of salt rock, Rock Mechanics and Rock Engineering. 39, 469–482, 2006. https://doi.org/10.10 07/s00603-005-0067-2.
  • S. Liu, J. Xu, An experimental study on the physico-mechanical properties of two post-high-temperature rocks, Engineering Geology. 185, 63–70, 2015. https:// doi.org/10.1016/j.enggeo.2014.11.013.
  • M. Li, X. Liu, Effect of Thermal Treatment on the Physical and Mechanical Properties of Sandstone: Insights from Experiments and Simulations, Rock Mechanics and Rock Engineering. 2022. https://doi. org/10.1007/s00603-022-02791-1.
  • X. Liu, W. Lu, M. Li, N. Zeng, T. Li, The thermal effect on the physical properties and corresponding permeability evolution of the heat-treated sandstones, Geofluids. 2020. https://doi.org/10.1155/2020/883832 5.
  • A. Ozguven, Y. Ozcelik, Effects of high temperature on physico-mechanical properties of Turkish natural building stones, Engineering Geology. 183, 127–136, 2014. https://doi.org/10.1016/j.enggeo.2014.10.006.
  • N. Sengun, Influence of thermal damage on the physical and mechanical properties of carbonate rocks, Arabian Journal of Geosciences. 7, 5543–5551, 2014. https://doi.org/10.1007/s12517-013-1177-x.
  • N.N. Sirdesai, T.N. Singh, P.G. Ranjith, Thermal alterations in the poro-mechanical characteristic of an Indian sandstone – A comparative study, Engineering Geology. 226, 208–220, 2017. https://doi.org/10.1016/ j.enggeo.2017.06.010.
  • Q. Sun, C. Lü, L. Cao, W. Li, J. Geng, W. Zhang, Thermal properties of sandstone after treatment at high temperature, 2016. https://doi.org/10.1016/j.ijrmms.20 16.03.006.
  • W. Xiao, D. Zhang, H. Yang, B. Yu, S. Li, Evaluation and analysis of sandstone brittleness under the influence of temperature, Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 8, 1–19, 2022. https://doi.org/10.1007/s40948-021-00324-8.
  • S.Q. Yang, P.G. Ranjith, H.W. Jing, W.L. Tian, Y. Ju, An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments, Geothermics. 65, 180–197,2017. https://doi.org/10.1016/j.geothermics.2 016.09.008.
  • H. Yavuz, S. Demirdag, S. Caran, Thermal effect on the physical properties of carbonate rocks, International Journal of Rock Mechanics and Mining Sciences. 47, 94–103, 2010. https://doi.org/10.1016/j.ijrmms.2009.0 9.014.
  • H. Ersoy, H. Kolaylı, M. Karahan, H. Harputlu Karahan, M.O. Sünnetci, Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures, Bulletin of Engineering Geology and the Environment. 78, 1515–1525, 2019. https://doi.org/10.1007/s10064-017-1208-z.
  • U. Sakız, Invesitgation of the thermo physico ‑ mechanical and drilling characteristics of sandstone in Zonguldak hard coal basin, Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 5 2023. https://doi.org/10.1007/s40948-023-00682-5.
  • H. Somerton, W, Thermal Properties and Temperature-Related Behavior of Rock/ Fluid Systems., 1992.
  • M. Hajpál, Changes in sandstones of historical monuments exposed to fire or high temperature, Fire Technology. 38, 373–382, 2002. https://doi.org/10.10 23/A:1020174500861.
  • N.I. Den’gina, V.N. Kazak, V. V. Pristash, Changes in rocks at high temperatures, Journal of Mining Science. 29, 472–477, 1993. https://doi.org/10.1007/BF007330 26.
  • N.N. Sirdesai, A. Singh, L.K. Sharma, R. Singh, T.N. Singh, Determination of thermal damage in rock specimen using intelligent techniques, Engineering Geology. 239, 179–194, 2018. https://doi.org/10.1016/ j.enggeo.2018.03.027.
  • B. Shi, H. Su, J. Li, H. Qi, F. Zhou, J.L. Torero, Z. Chen, Clean power generation from the intractable natural coalfield fires: Turn harm into benefit, Scientific Reports. 7, 1–5, 2017. https://doi.org/10.10 38/s41598-017-05622-4.
  • J. Deng, F. Zhou, B. Shi, J.L. Torero, H. Qi, P. Liu, S. Ge, Z. Wang, C. Chen, Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China, Energy. 207, 2020. https://doi.org/10.1016/j.energy.20 20.118303.
  • N.N. Sirdesai, R. Singh, T.N. Singh, P.G. Ranjith, Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project, Proceedings of the International Association of Hydrological Sciences. 372, 455–462, 2015. https://doi.org/10.5194/piahs-372-455-2015.
  • X. Liu, G. Guo, H. Li, Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters, Results in Physics. 12, 1956–1963, 2019. https://doi.org/10.1016/j.rinp.2019. 02.006.
  • X. Wu, Z. Huang, H. Song, S. Zhang, Z. Cheng, R. Li, H. Wen, P. Huang, X. Dai, Variations of Physical and Mechanical Properties of Heated Granite After Rapid Cooling with Liquid Nitrogen, Rock Mechanics and Rock Engineering. 52, 2123–2139, 2019. https://doi. org/10.1007/s00603-018-1727-3.
  • Y.J. Shen, Y.L. Zhang, F. Gao, G.S. Yang, X.P. Lai, Influence of temperature on the microstructure deterioration of sandstone, Energies. 11, 1–17, 2018. https://doi.org/10.3390/en11071753.
  • Q. Sun, J. Geng, F. Zhao, Experiment study of physical and mechanical properties of sandstone after variable thermal cycles, Bulletin of Engineering Geology and the Environment. 79, 3771–3784, 2020. https://doi.org /10.1007/s10064-020-01779-x.
  • B. Mahanta, P.G. Ranjith, V. Vishal, T.N. Singh, Temperature-induced deformational responses and microstructural alteration of sandstone, Journal of Petroleum Science and Engineering. 192, 107239, 2020. https://doi.org/10.1016/j.petrol.2020.107239.
  • C. Lü, Q. Sun, W. Zhang, J. Geng, Y. Qi, L. Lu, The effect of high temperature on tensile strength of sandstone, Applied Thermal Engineering. 111, 573–579, 2017. https://doi.org/10.1016/j.applthermaleng.2 016.09.151.
  • H. Tian, T. Kempka, S. Yu, M. Ziegler, Mechanical Properties of Sandstones Exposed to High Temperature, Rock Mechanics and Rock Engineering. 49, 321–327, 2016. https://doi.org/10.1007/s00603-0 15-0724-z.
  • S. Vidana Pathiranagei, I. Gratchev, Engineering properties of sandstone heated to a range of high temperatures, Bulletin of Engineering Geology and the Environment. 80, 2415–2432, 2021. https://doi.org/10 .1007/s10064-020-02065-6.
  • M. Li, D. Wang, Z. Shao, Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance, Engineering Geology. 275, 105739,2020. https://doi.org/10.1016/j.enggeo.20 20.105739.
  • B. Kong, E. Wang, Z. Li, X. Wang, X. Liu, N. Li, Y. Yang, Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment, Engineering Geology. 209, 82–92, 2016. https://doi.or g/10.1016/j.enggeo.2016.05.009.
  • Y. Zhang, X.T. Feng, C. Yang, Q. Han, Z. Wang, R. Kong, Evaluation Method of Rock Brittleness under True Triaxial Stress States Based on Pre-peak Deformation Characteristic and Post-peak Energy Evolution, Rock Mechanics and Rock Engineering. 54, 1277–1291, 2021. https://doi.org/10.1007/s00603-020-02330-w.
  • S. Yagiz, J. Rostami, Indentation test for the measurement of rock brittleness, 46th US Rock Mechanics / Geomechanics Symposium 2012. 1, 511–516, 2012.
  • Y. Xia, H. Zhou, C. Zhang, S. He, Y. Gao, P. Wang, The evaluation of rock brittleness and its application : a review study, European Journal of Environmental and Civil Engineering. 1–41, 2019. https://doi.org/10.1080/ 19648189.2019.1655485.
  • U. Sakız, Predicting the brittleness of sandstones from the Leeb hardness test, Petroleum Science and Technology. 42 (11), 1360-1384, 2024. https://doi.org /10.1080/10916466.2022.2143810
  • S. Yagiz, C. Gokceoglu, Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness, Expert Systems with Applications. 37, 2265–2272, 2010. https://doi.org/10.1016/j.eswa.2009 .07.046.
  • F. Meng, L.N.Y. Wong, H. Zhou, Rock brittleness indices and their applications to different fields of rock engineering: A review, Journal of Rock Mechanics and Geotechnical Engineering. 13, 221–247, 2021. https:// doi.org/10.1016/j.jrmge.2020.06.008.
  • M.M. Protodyakonov, Mechanical properties and drillability of rocks. In Proceedings of the fifth symposium rock mechanics, University of Minnesota USA. 1962.
  • V. Hucka, B. Das, Brittleness determination of rocks by different methods, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 11, 389–92, 1974.
  • E.A. Goerge, Brittle failure ofrock material-test results and constitutive models, AA Balkema/Rotterdam/Brolkfield. 123–8, 1995.
  • F. Dahl, DRI, BWI, CLI standards, NTNU. 20, 2003.
  • S. Yagiz, Assessment of brittleness using rock strength and density with punch penetration test, Tunnelling and Underground Space Technology. 24, 66–74, 2009. https://doi.org/10.1016/j.tust.2008.04.002.
  • R. Altindag, Correlation of specific energy with rock brittleness concepts on rock cutting, Journal of The South African Institute of Mining and Metallurgy. 103, 163–171, 2003.
  • R. Altindag, Assessment of some brittleness indexes in rock-drilling efficiency, Rock Mechanics and Rock Engineering. 43, 361–370, 2010. https://doi.org/10.10 07/s00603-009-0057-x.
  • O. Yarali, S. Kahraman, The drillability assessment of rocks using the different brittleness values, Tunnelling and Underground Space Technology. 26, 406–414, 2011. https://doi.org/10.1016/j.tust.2010.11.013.
  • M.K. Özfirat, H. Yenice, F. Şimşir, O. Yarali, A new approach to rock brittleness and its usability at prediction of drillability, Journal of African Earth Sciences. 119, 94–101, 2016. https://doi.org/10.1016/j. jafrearsci.2016.03.017.
  • S. Sha, G. Rong, J. Tan, R. He, B. Li, Tensile strength and brittleness of sandstone and granite after high-temperature treatment: a review, Arabian Journal of Geosciences. 13, 2020. https://doi.org/10.1007/s12517 -020-05647-6.
  • D.M. Jarvie, R.J. Hill, T.E. Ruble, R.M. Pollastro, Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment, American Association of Petroleum Geologists Bulletin. 91, 475–499, 2007. https://doi.org/10.1306/12190606068.
  • X. Li, K. Peng, J. Peng, D. Hou, Effect of thermal damage on mechanical behavior of a fine-grained sandstone, Arabian Journal of Geosciences. 14, 2021. https://doi.org/10.1007/s12517-021-07607-0.
  • V. Srinivasan, A. Tripathy, T. Gupta, T.N. Singh, An Investigation on the Influence of Thermal Damage on the Physical, Mechanical and Acoustic Behavior of Indian Gondwana Shale, Rock Mechanics and Rock Engineering. 53, 2865–2885, 2020. https://doi.org/10 .1007/s00603-020-02087-2.
  • D. Wang, F. Zhou, Y. Dong, D. Sun, B. Yu, Experimental Investigation of Thermal Effect on Fracability Index of Geothermal Reservoirs, Natural Resources Research. 30, 273–288, 2021. https://doi .org/10.1007/s11053-020-09733-0.
  • ISRM, The complete ISRM suggested methods for rock characterization,testing and monitoring: 1974–2006, 2007.
  • T. Hueckel, A. Peano, R. Pellegrini, A constitutive law for thermo-plastic behaviour of rocks: an analogy with clays, Surveys in Geophysics. 15, 643–671, 1994. https://doi.org/10.1007/BF00690178.
  • H. Tian, M. Ziegler, T. Kempka, Physical and mechanical behavior of claystone exposed to temperatures up to 1000°C, International Journal of Rock Mechanics and Mining Sciences. 70, 144–153, 2014. https://doi.org/10.1016/j.ijrmms.2014.04.014.
  • H. Tian, G. Mei, G.S. Jiang, Y. Qin, High-Temperature Influence on Mechanical Properties of Diorite, Rock Mechanics and Rock Engineering. 50, 1661–1666, 2017. https://doi.org/10.1007/s00603-017-1185-3.
  • X. biao MAO, L. ying ZHANG, T. zhen LI, H. shun LIU, Properties of failure mode and thermal damage for limestone at high temperature, Mining Science and Technology. 19, 290–294, 2009. https://doi.org/10.10 16/S1674-5264(09)60054-5.
  • Q. Liu, Z. Qian, Z. Wu, Micro/macro physical and mechanical variation of red sandstone subjected to cyclic heating and cooling: an experimental study, Bulletin of Engineering Geology and the Environment. 78, 1485–1499, 2019. https://doi.org/10.1007/s10064-017-1196-z.
  • C. Bilen, A new approach for the prediction of brittleness index based on chemical properties of basaltic rocks, Acta Geodynamica et Geomaterialia. 18, 285–299, 2021. https://doi.org/10.13168/agg.2021.002 0.
  • X. Wu, Z. Huang, Z. Cheng, S. Zhang, H. Song, X. Zhao, Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite, Applied Thermal Engineering. 156, 99–110, 2019. https://doi. org/10.1016/j.applthermaleng.2019.04.046.
There are 70 citations in total.

Details

Primary Language English
Subjects Rock Mechanics and Fortification, Rock Mechanics
Journal Section Articles
Authors

Utku Sakız 0000-0002-7246-0714

Early Pub Date October 7, 2025
Publication Date October 14, 2025
Submission Date November 27, 2024
Acceptance Date September 23, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Sakız, U. (2025). Effect of thermal damage on brittleness and chemical properties of sandstone. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Sakız U. Effect of thermal damage on brittleness and chemical properties of sandstone. NOHU J. Eng. Sci. October 2025;14(4).
Chicago Sakız, Utku. “Effect of Thermal Damage on Brittleness and Chemical Properties of Sandstone”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025).
EndNote Sakız U (October 1, 2025) Effect of thermal damage on brittleness and chemical properties of sandstone. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE U. Sakız, “Effect of thermal damage on brittleness and chemical properties of sandstone”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Sakız, Utku. “Effect of Thermal Damage on Brittleness and Chemical Properties of Sandstone”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025).
JAMA Sakız U. Effect of thermal damage on brittleness and chemical properties of sandstone. NOHU J. Eng. Sci. 2025;14.
MLA Sakız, Utku. “Effect of Thermal Damage on Brittleness and Chemical Properties of Sandstone”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Sakız U. Effect of thermal damage on brittleness and chemical properties of sandstone. NOHU J. Eng. Sci. 2025;14(4).

download