Research Article
BibTex RIS Cite

AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies

Year 2025, Volume: 14 Issue: 4

Abstract

This study systematically evaluates the efficacy of advanced deep learning architectures, namely Vision Transformers (ViT) and various ResNet models (ResNet50, ResNet101, ResNet152), in the classification of chest radiographs into four clinically significant diagnostic categories: Normal, Lung Opacity, Viral Pneumonia, and COVID-19. A meticulously curated dataset comprising 21,165 chest X-ray images was utilized to benchmark the models' performance across key evaluation metrics, including precision, recall, F1-score and accuracy. The experimental evaluation reveals that ViT model achieved 90.25% accuracy, 91.56% precision, 89.22% recall, and a 90.25% F1-score. These findings highlight the potential of AI-driven approaches in augmenting medical diagnostics, improving diagnostic accuracy, and enhancing healthcare delivery, particularly in resource-limited settings. The study underscores the applicability of Vision Transformers in complex medical imaging tasks and contributes to the growing body of research supporting AI-based solutions for respiratory diseases and other healthcare challenges.

References

  • WHO, WHO Director-General's opening remarks at the media briefing on COVID-19. March 2020. Available: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  • WHO, WHO COVID-19 dashboard-cases. 30 July 2024. Available: https://data.who.int/dashboards/covid19/cases?n=o
  • WHO, WHO COVID-19 dashboard-deaths. 30 July 2024. Available: https://data.who.int/dashboards/covid19/deaths?n=o
  • R. T. Gandhi, J. B. Lynch, and C. Del Rio, Mild or moderate Covid-19. New England Journal of Medicine, 383 (18), 1757-1766, 2020.
  • J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8 (4), e488-e496, 2020. https://doi.org/10.1016/S2214-109X(20)30074-7
  • E. J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glickman, et al., Fair allocation of scarce medical resources in the time of Covid-19. New England Journal of Medicine, 382, 2049-2055, 2020.
  • C. Dong, S. Cao, and H. Li, Young children's online learning during COVID-19 pandemic: Chinese parents' beliefs and attitudes. Children and Youth Services Review, 118, 105440, 2020. https://doi.org/10.1016/j.childyouth.2020.105440
  • G. Liu and J. F. Rusling, COVID-19 antibody tests and their limitations. ACS Sensors, 6 (3), 593-612, 2021. https://doi.org/10.1021/acssensors.0c02621
  • W.-C. Dai, P. Zhang, H. Wang, X. Cheng, L. Xu, and Y. Yin, CT imaging and differential diagnosis of COVID-19. Canadian Association of Radiologists Journal, 71 (2), 195-200, 2020. https://doi.org/10.1177/0846537120913033
  • F. Shi, L. Xia, F. Shan, B. Song, D. Wu, Y. Wei, et al., Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Physics in Medicine & Biology, 66 (6), 065031, 2021. https://doi.org/10.1088/1361-6560/abe838
  • Y. Oh, S. Park, and J. C. Ye, Deep learning COVID-19 features on CXR using limited training data sets. IEEE Transactions on Medical Imaging, 39 (8), 2688-2700, 2020. https://doi.org/10.1109/TMI.2020.2993291
  • C. Butt, J. Gill, D. Chun, and B. A. Babu, Deep learning system to screen coronavirus disease 2019 pneumonia. Applied Intelligence, 50, 3622-3634, 2020. https://doi.org/10.1007/s10489-020-01714-3
  • A. I. Khan, J. L. Shah, and M. M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196, 105581, 2020. https://doi.org/10.1016/j.cmpb.2020.105581
  • X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, et al., A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering, 6 (10), 1122-1129, 2020. https://doi.org/10.1016/j.eng.2020.04.010
  • N. S. Shadin, S. Sanjana, and N. J. Lisa, COVID-19 diagnosis from chest X-ray images using convolutional neural network (CNN) and InceptionV3. International Conference on Information Technology (ICIT), pp. 799-804, Amman, Jordan, 14-15 July 2021.
  • S. Park, G. Kim, Y. Oh, J. B. Seo, S. M. Lee, J. H. Kim, et al., Vision transformer for covid-19 cxr diagnosis using chest x-ray feature corpus. arXiv preprint arXiv:2103.07055, 2021.
  • S. Cannata, C. Paschero, M. Enescu, F. A. Fiorini, and M. Panella, Deep learning algorithms for automatic COVID-19 detection on chest X-ray images. IEEE Access, 10, 119905-119913, 2022. https://doi.org/10.1109/ACCESS.2022.3221531
  • M. E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, et al., Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665-132676, 2020. https://doi.org/10.1109/ACCESS.2020.3010287
  • T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, S. B. Abul Kashem, et al., Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, 104319, 2021. https://doi.org/10.1016/j.compbiomed.2021.104319
  • Kaggle, COVID-19 Radiography Database. https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/data, Accessed 25 June 2025.
  • K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, Las Vegas, NV, USA, 27-30 June 2016.
  • A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. https:/doi.org/10.48550/arXiv.2010.11929
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. https:/doi.org/10.48550/arXiv.1706.03762
  • I. Loshchilov and F. Hutter, Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. https:/doi.org/10.48550/arXiv.1711.05101

Solunum hastalıklarının yapay zeka destekli teşhisi: Covid-19 ve akciğer patolojileri için görü dönüştürücüleri ve ResNet mimarilerinin değerlendirilmesi

Year 2025, Volume: 14 Issue: 4

Abstract

Bu çalışma, gelişmiş derin öğrenme mimarilerinin – özellikle Vision Transformers (ViT) ve çeşitli ResNet modellerinin (ResNet50, ResNet101, ResNet152) – göğüs röntgenlerini Normal, Akciğer Opasitesi, Viral Pnömoni ve COVID-19 olmak üzere dört klinik açıdan önemli tanısal kategoriye sınıflandırmadaki etkinliğini sistematik olarak değerlendirmektedir. Modellerin performansını, hassasiyet, geri çağırma, F1-skora ve doğruluk gibi temel değerlendirme metrikleri üzerinden ölçmek amacıyla özenle hazırlanmış 21.165 göğüs X-ışını görüntüsünden oluşan bir veri seti kullanılmıştır. Deneysel değerlendirmeler, ViT modelinin %90.25 doğruluk, %91.56 hassasiyet, %89.22 geri çağırma ve %90.25 F1-skora elde ettiğini ortaya koymaktadır. Bu bulgular, yapay zeka temelli yaklaşımların tıbbi tanı süreçlerini güçlendirme, tanı doğruluğunu artırma ve özellikle kaynak kısıtlı ortamlarda sağlık hizmetlerinin sunumunu iyileştirme potansiyeline işaret etmektedir. Çalışma, karmaşık tıbbi görüntüleme görevlerinde Vision Transformers'ın uygulanabilirliğini vurgulamakta ve solunum yolu hastalıkları ile diğer sağlık sorunlarına yönelik yapay zeka temelli çözümleri destekleyen artan araştırma literatürüne katkıda bulunmaktadır.

References

  • WHO, WHO Director-General's opening remarks at the media briefing on COVID-19. March 2020. Available: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  • WHO, WHO COVID-19 dashboard-cases. 30 July 2024. Available: https://data.who.int/dashboards/covid19/cases?n=o
  • WHO, WHO COVID-19 dashboard-deaths. 30 July 2024. Available: https://data.who.int/dashboards/covid19/deaths?n=o
  • R. T. Gandhi, J. B. Lynch, and C. Del Rio, Mild or moderate Covid-19. New England Journal of Medicine, 383 (18), 1757-1766, 2020.
  • J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8 (4), e488-e496, 2020. https://doi.org/10.1016/S2214-109X(20)30074-7
  • E. J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glickman, et al., Fair allocation of scarce medical resources in the time of Covid-19. New England Journal of Medicine, 382, 2049-2055, 2020.
  • C. Dong, S. Cao, and H. Li, Young children's online learning during COVID-19 pandemic: Chinese parents' beliefs and attitudes. Children and Youth Services Review, 118, 105440, 2020. https://doi.org/10.1016/j.childyouth.2020.105440
  • G. Liu and J. F. Rusling, COVID-19 antibody tests and their limitations. ACS Sensors, 6 (3), 593-612, 2021. https://doi.org/10.1021/acssensors.0c02621
  • W.-C. Dai, P. Zhang, H. Wang, X. Cheng, L. Xu, and Y. Yin, CT imaging and differential diagnosis of COVID-19. Canadian Association of Radiologists Journal, 71 (2), 195-200, 2020. https://doi.org/10.1177/0846537120913033
  • F. Shi, L. Xia, F. Shan, B. Song, D. Wu, Y. Wei, et al., Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Physics in Medicine & Biology, 66 (6), 065031, 2021. https://doi.org/10.1088/1361-6560/abe838
  • Y. Oh, S. Park, and J. C. Ye, Deep learning COVID-19 features on CXR using limited training data sets. IEEE Transactions on Medical Imaging, 39 (8), 2688-2700, 2020. https://doi.org/10.1109/TMI.2020.2993291
  • C. Butt, J. Gill, D. Chun, and B. A. Babu, Deep learning system to screen coronavirus disease 2019 pneumonia. Applied Intelligence, 50, 3622-3634, 2020. https://doi.org/10.1007/s10489-020-01714-3
  • A. I. Khan, J. L. Shah, and M. M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196, 105581, 2020. https://doi.org/10.1016/j.cmpb.2020.105581
  • X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, et al., A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering, 6 (10), 1122-1129, 2020. https://doi.org/10.1016/j.eng.2020.04.010
  • N. S. Shadin, S. Sanjana, and N. J. Lisa, COVID-19 diagnosis from chest X-ray images using convolutional neural network (CNN) and InceptionV3. International Conference on Information Technology (ICIT), pp. 799-804, Amman, Jordan, 14-15 July 2021.
  • S. Park, G. Kim, Y. Oh, J. B. Seo, S. M. Lee, J. H. Kim, et al., Vision transformer for covid-19 cxr diagnosis using chest x-ray feature corpus. arXiv preprint arXiv:2103.07055, 2021.
  • S. Cannata, C. Paschero, M. Enescu, F. A. Fiorini, and M. Panella, Deep learning algorithms for automatic COVID-19 detection on chest X-ray images. IEEE Access, 10, 119905-119913, 2022. https://doi.org/10.1109/ACCESS.2022.3221531
  • M. E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, et al., Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665-132676, 2020. https://doi.org/10.1109/ACCESS.2020.3010287
  • T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, S. B. Abul Kashem, et al., Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, 104319, 2021. https://doi.org/10.1016/j.compbiomed.2021.104319
  • Kaggle, COVID-19 Radiography Database. https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/data, Accessed 25 June 2025.
  • K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, Las Vegas, NV, USA, 27-30 June 2016.
  • A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. https:/doi.org/10.48550/arXiv.2010.11929
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. https:/doi.org/10.48550/arXiv.1706.03762
  • I. Loshchilov and F. Hutter, Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. https:/doi.org/10.48550/arXiv.1711.05101
There are 24 citations in total.

Details

Primary Language English
Subjects Deep Learning, Biomedical Imaging
Journal Section Articles
Authors

Ahmet Solak 0000-0002-5494-1987

Early Pub Date September 19, 2025
Publication Date October 14, 2025
Submission Date February 7, 2025
Acceptance Date August 29, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Solak, A. (2025). AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Solak A. AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies. NOHU J. Eng. Sci. September 2025;14(4).
Chicago Solak, Ahmet. “AI-Powered Diagnosis of Respiratory Diseases: Evaluating Vision Transformers and ResNet Architectures for Covid-19 and Lung Pathologies”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (September 2025).
EndNote Solak A (September 1, 2025) AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE A. Solak, “AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Solak, Ahmet. “AI-Powered Diagnosis of Respiratory Diseases: Evaluating Vision Transformers and ResNet Architectures for Covid-19 and Lung Pathologies”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (September2025).
JAMA Solak A. AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies. NOHU J. Eng. Sci. 2025;14.
MLA Solak, Ahmet. “AI-Powered Diagnosis of Respiratory Diseases: Evaluating Vision Transformers and ResNet Architectures for Covid-19 and Lung Pathologies”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Solak A. AI-powered diagnosis of respiratory diseases: Evaluating vision transformers and ResNet architectures for covid-19 and lung pathologies. NOHU J. Eng. Sci. 2025;14(4).

download