Research Article
BibTex RIS Cite

Nem içeriğinin barit dolguların gama ışını ve nötron soğurma özelliklerine etkisi

Year 2025, Volume: 14 Issue: 4

Abstract

Günümüzde küresel ısınma sorununa katkı sağlayacak enerji kaynaklarına ve yeni teknolojilere olan talepler, nükleer enerji alanında yapılan araştırma ve faaliyetlere katkı sağlamıştır. Artan ve çeşitlenen nükleer faaliyetler, işletilmeleri sırasında radyoaktif emisyonların giderilmesi için yapılacak çalışmaların da artmasına neden olmaktadır. Bu çalışmanın amacı, Proctor test cihazı ile sıkıştırılan farklı nem içeriklerindeki (ağırlıkça %1-5) barit dolgu malzemelerinin gama ışını ve nötron zırhlama yeteneklerini araştırmaktır. Standart bir sıkıştırma işleminden sonra, bu sıkıştırılmış dolgu malzemelerinin gama ışını ve nötron zayıflatma özellikleri, yoğunluk ve element fraksiyonları kullanılarak NGCal yazılımı ile simüle edilmiştir. Sonuçlar, optimum nem içeriğinin %3 ile %4 arasında olduğunu ve 2.917 g/cm³'te maksimum yoğunluğa ulaştığını göstermektedir. Gama ışını zayıflaması nem değişimine karşı minimum hassasiyet gösterirken, nötron zayıflaması, hidrojenin nötron moderasyonundaki rolü nedeniyle artan nem içeriğiyle önemli ölçüde iyileşmiştir. Bulgular, nem kontrolünün radyasyon kalkanı verimliliğini optimize etmek için gerekli olduğunu ve gama ışını zayıflatma kararlılığını gelişmiş nötron emilimi ile dengelediğini göstermektedir. Bu bilgiler, nükleer enerji uygulamaları için daha etkili radyasyon kalkanı malzemelerinin geliştirilmesine katkıda bulunmaktadır.

References

  • B. Han, L. Zhang, J. Ou, Radiation shielding concrete. Smart and Multifunctional Concrete Toward Sustainable Infrastructures. Springer, 329-337, 2017. https://doi.org/10.1007/978-981-10-4349-9.
  • H.S. Gökçe,, B.C. Öztürk, N.F. Çam, Ö. Andiç-Çakır, Natural radioactivity of barite concrete shields containing commonly used supplementary materials. Construction and Building Materials, 236, 117569, 2020. https://doi.org/10.1016/ j.conbuildmat.2019.117569.
  • T. Daungwilailuk, C. Yenchai, W. Rungjaroenkiti, P. Pheinsusom, C. Panwisawas, W. Pansuk, Use of barite concrete for radiation shielding against gamma-rays and neutrons, Construction and Building Materials, 326, 126838, 2022. https://doi.org/10.1016/ j.conbuildmat.2022.126838.
  • H.S. Gökçe, N Öksüzer, H.A. Kamiloğlu, F. Yılmaz, Gamma-ray and neutron shielding capability of blended cement-stabilized barite fillers developed by maximum density method, Progress in Nuclear Energy, 161, 104743, 2023. https://doi.org/10.1016/ j.pnucene.2023.104743.
  • İ. Demir, M. Gümüş, H.S. Gökçe, Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures, Construction and Building Materials, 257, 119596, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119596.
  • M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review, Annals of Nuclear Energy, 160, 108408, 2021. https://doi.org/10.1016/j.anucene.2021.108408.
  • H. Xiao, W. Wang, S.H. Goh, Effectiveness study for fly ash cement improved marine clay, Construction and Building Materials, 157, 1053-1064, 2017. https://doi.org/10.1016/j.conbuildmat.2017.09.070.
  • I.G. McKinley, W.R. Alexander, P.C. Blaser, Development of geological disposal concepts, Radioactivity in the Environment, 9, 41-76, 2007. https://doi.org/10.1016/S1569-4860(06)09003-6.
  • K. Pedersen, A. Bengtsson, A. Blom, L. Johansson, T. Taborowski, Mobility and reactivity of sulphide in bentonite clays–implications for engineered bentonite barriers in geological repositories for radioactive wastes, Applied Clay Science, 146, 495-502, 2017. https://doi.org/10.1016/j.clay.2017.07.003.
  • S. Akbulut, A. Sehhatigdiri, H. Eroglu, S. Çelik research on the radiation shielding effects of clay, silica fume and cement samples, Radiation Physics and Chemistry, 117, 88-92, 2015. https://doi.org/10.1016/ j.radphyschem.2015.08.003.
  • A.T. Şensoy, H.S. Gökçe, Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields, Construction and Building Materials, 253, 119218, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119218.
  • H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nuclear Engineering and Technology, 48(5), 1230-1236, 2016. https://doi.org/10.1016/j.net.2016.04.001.
  • P. Shafigh, M. Hashemi, B.H. Nam, S. Koting, Optimum moisture content in roller-compacted concrete pavement, International Journal of Pavement Engineering, 21(14), 1769-1779, 2020. https://doi.org/10.1080/10298436.2019.1567919.
  • A. Mardani-Aghabaglou, K. Ramyar, Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method, Construction and Building Materials, 38, 356-364, 2013. https://doi.org/10.1016/ j.conbuildmat.2012.07.109.
  • L.F. Pires, Radiation shielding properties of weathered soils: Influence of the chemical composition and granulometric fractions, Nuclear Engineering and Technology, 54(9), 3470-3477, 2022. https://doi.org/10.1016/j.net.2022.04.002.
  • H. Hu, et al., Study on composite material for shielding mixed neutron and gamma rays, IEEE Transactions on Nuclear Science, 55(4), 2376-2384, 2008. https://doi.org/10.1109/TNS.2008.2000800.
  • H.S. Gökçe, O. Güngör, H. Yılmaz, An online software to simulate the shielding properties of materials for neutrons and photons: NGCal, Radiation Physics and Chemistry, 185, 109519, 2021. https://doi.org/10.1016/j.radphyschem.2021.109519.
  • T. Piotrowski, M. Mazgaj, A. Żak, J. Skubalski, Importance of atomic composition and moisture content of cement-based composites in neutron radiation shielding, Procedia Engineering, 108, 616-623, 2015. https://doi.org/10.1016/ j.proeng.2015.06.188.
  • S.U. Susha Lekshmi, D.N. Singh, M.S. Baghini, A critical review of soil moisture measurement, Measurement, 54, 92-105, 2014. https://doi.org/10.1016/j.measurement.2014.04.007.
  • M. Zreda, D. Desilets, T.P.A. Ferré, R.L. Scott, Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons, Geophysical Research Letters, 35(21), L21402, 2008. https://doi.org/10.1029/2008GL035655.
  • M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, M.C. Looms, Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications, Vadose Zone Journal, 16(8), 1-11, 2017. https://doi.org/10.2136/vzj2017.04.0086.
  • B.T.M. Willis, C.J. Carlile, Experimental neutron scattering, Oxford University Press, 338 pages, 2013.
  • E. Perfect, C.L. Cheng, M. Kang, H.Z. Bilheux, J.M. Lamanna, M.J. Gragg, D.M. Wright, Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review, Earth-Science Reviews, 129, 120-135, 2014. https://doi.org/10.1016/ j.earscirev.2013.11.012

Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers

Year 2025, Volume: 14 Issue: 4

Abstract

Today, demands for energy sources and new technologies that will contribute to the challenge of global warming have contributed to the research and activities carried out in the field of nuclear energy. Increasing and diversifying nuclear activities lead to an increase in the studies to be carried out for the elimination of radioactive emissions during their operation. This study aims to investigate the gamma ray and neutron shielding capabilities of barite backfill materials at different moisture contents (1-5%, by weight) compacted with a Proctor test apparatus. After a standard compaction procedure, the gamma ray and neutron attenuation properties of these compacted filler materials were simulated with NGCal software using the density and elemental fractions. The results indicate that the optimum moisture content (OMC) lies between 3% and 4%, achieving maximum density at 2.917 g/cm³. While gamma-ray attenuation exhibited minimal sensitivity to moisture variation, neutron attenuation improved significantly with increased moisture content due to hydrogen’s role in neutron moderation. The findings suggest that moisture control is essential in optimizing radiation shielding efficiency, balancing gamma-ray attenuation stability with enhanced neutron absorption. These insights contribute to the development of more effective radiation shielding materials for nuclear energy applications.

References

  • B. Han, L. Zhang, J. Ou, Radiation shielding concrete. Smart and Multifunctional Concrete Toward Sustainable Infrastructures. Springer, 329-337, 2017. https://doi.org/10.1007/978-981-10-4349-9.
  • H.S. Gökçe,, B.C. Öztürk, N.F. Çam, Ö. Andiç-Çakır, Natural radioactivity of barite concrete shields containing commonly used supplementary materials. Construction and Building Materials, 236, 117569, 2020. https://doi.org/10.1016/ j.conbuildmat.2019.117569.
  • T. Daungwilailuk, C. Yenchai, W. Rungjaroenkiti, P. Pheinsusom, C. Panwisawas, W. Pansuk, Use of barite concrete for radiation shielding against gamma-rays and neutrons, Construction and Building Materials, 326, 126838, 2022. https://doi.org/10.1016/ j.conbuildmat.2022.126838.
  • H.S. Gökçe, N Öksüzer, H.A. Kamiloğlu, F. Yılmaz, Gamma-ray and neutron shielding capability of blended cement-stabilized barite fillers developed by maximum density method, Progress in Nuclear Energy, 161, 104743, 2023. https://doi.org/10.1016/ j.pnucene.2023.104743.
  • İ. Demir, M. Gümüş, H.S. Gökçe, Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures, Construction and Building Materials, 257, 119596, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119596.
  • M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review, Annals of Nuclear Energy, 160, 108408, 2021. https://doi.org/10.1016/j.anucene.2021.108408.
  • H. Xiao, W. Wang, S.H. Goh, Effectiveness study for fly ash cement improved marine clay, Construction and Building Materials, 157, 1053-1064, 2017. https://doi.org/10.1016/j.conbuildmat.2017.09.070.
  • I.G. McKinley, W.R. Alexander, P.C. Blaser, Development of geological disposal concepts, Radioactivity in the Environment, 9, 41-76, 2007. https://doi.org/10.1016/S1569-4860(06)09003-6.
  • K. Pedersen, A. Bengtsson, A. Blom, L. Johansson, T. Taborowski, Mobility and reactivity of sulphide in bentonite clays–implications for engineered bentonite barriers in geological repositories for radioactive wastes, Applied Clay Science, 146, 495-502, 2017. https://doi.org/10.1016/j.clay.2017.07.003.
  • S. Akbulut, A. Sehhatigdiri, H. Eroglu, S. Çelik research on the radiation shielding effects of clay, silica fume and cement samples, Radiation Physics and Chemistry, 117, 88-92, 2015. https://doi.org/10.1016/ j.radphyschem.2015.08.003.
  • A.T. Şensoy, H.S. Gökçe, Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields, Construction and Building Materials, 253, 119218, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119218.
  • H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nuclear Engineering and Technology, 48(5), 1230-1236, 2016. https://doi.org/10.1016/j.net.2016.04.001.
  • P. Shafigh, M. Hashemi, B.H. Nam, S. Koting, Optimum moisture content in roller-compacted concrete pavement, International Journal of Pavement Engineering, 21(14), 1769-1779, 2020. https://doi.org/10.1080/10298436.2019.1567919.
  • A. Mardani-Aghabaglou, K. Ramyar, Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method, Construction and Building Materials, 38, 356-364, 2013. https://doi.org/10.1016/ j.conbuildmat.2012.07.109.
  • L.F. Pires, Radiation shielding properties of weathered soils: Influence of the chemical composition and granulometric fractions, Nuclear Engineering and Technology, 54(9), 3470-3477, 2022. https://doi.org/10.1016/j.net.2022.04.002.
  • H. Hu, et al., Study on composite material for shielding mixed neutron and gamma rays, IEEE Transactions on Nuclear Science, 55(4), 2376-2384, 2008. https://doi.org/10.1109/TNS.2008.2000800.
  • H.S. Gökçe, O. Güngör, H. Yılmaz, An online software to simulate the shielding properties of materials for neutrons and photons: NGCal, Radiation Physics and Chemistry, 185, 109519, 2021. https://doi.org/10.1016/j.radphyschem.2021.109519.
  • T. Piotrowski, M. Mazgaj, A. Żak, J. Skubalski, Importance of atomic composition and moisture content of cement-based composites in neutron radiation shielding, Procedia Engineering, 108, 616-623, 2015. https://doi.org/10.1016/ j.proeng.2015.06.188.
  • S.U. Susha Lekshmi, D.N. Singh, M.S. Baghini, A critical review of soil moisture measurement, Measurement, 54, 92-105, 2014. https://doi.org/10.1016/j.measurement.2014.04.007.
  • M. Zreda, D. Desilets, T.P.A. Ferré, R.L. Scott, Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons, Geophysical Research Letters, 35(21), L21402, 2008. https://doi.org/10.1029/2008GL035655.
  • M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, M.C. Looms, Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications, Vadose Zone Journal, 16(8), 1-11, 2017. https://doi.org/10.2136/vzj2017.04.0086.
  • B.T.M. Willis, C.J. Carlile, Experimental neutron scattering, Oxford University Press, 338 pages, 2013.
  • E. Perfect, C.L. Cheng, M. Kang, H.Z. Bilheux, J.M. Lamanna, M.J. Gragg, D.M. Wright, Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review, Earth-Science Reviews, 129, 120-135, 2014. https://doi.org/10.1016/ j.earscirev.2013.11.012
There are 23 citations in total.

Details

Primary Language English
Subjects Construction Materials, Radiation Technology
Journal Section Articles
Authors

M. Talha Ünal This is me 0000-0001-6971-5838

H. Süleyman Gökçe 0000-0002-6978-0135

Early Pub Date September 29, 2025
Publication Date October 14, 2025
Submission Date February 26, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Ünal, M. T., & Gökçe, H. S. (2025). Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Ünal MT, Gökçe HS. Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers. NOHU J. Eng. Sci. September 2025;14(4).
Chicago Ünal, M. Talha, and H. Süleyman Gökçe. “Effect of Moisture Content on Gamma Ray and Neutron Attenuation Properties of Barite Fillers”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (September 2025).
EndNote Ünal MT, Gökçe HS (September 1, 2025) Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE M. T. Ünal and H. S. Gökçe, “Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Ünal, M. Talha - Gökçe, H. Süleyman. “Effect of Moisture Content on Gamma Ray and Neutron Attenuation Properties of Barite Fillers”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (September2025).
JAMA Ünal MT, Gökçe HS. Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers. NOHU J. Eng. Sci. 2025;14.
MLA Ünal, M. Talha and H. Süleyman Gökçe. “Effect of Moisture Content on Gamma Ray and Neutron Attenuation Properties of Barite Fillers”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Ünal MT, Gökçe HS. Effect of moisture content on gamma ray and neutron attenuation properties of barite fillers. NOHU J. Eng. Sci. 2025;14(4).

download