Research Article
BibTex RIS Cite

Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu

Year 2025, Volume: 14 Issue: 4

Abstract

Bu çalışmada, mısır püskülü ve koçanı kalıntılarından iki aşamalı piroliz ve Ca(OH)2 aktive edici proses ile elde edilen son derece gözenekli aktif karbon (MPK-AK) geliştirilmesi ve daha sonra sudan tetrasiklin (TSL) ve parasetamolü (PST) uzaklaştırmak için uygulanması amaçlanmıştır. Kimyasal aktivasyon için optimum koşullar 700 °C ve Ca(OH)2 / mısır atıkları ağırlıkça (3/1; w/w) olmuştur. MPK-AK adsorbanı (adsorpsiyondan önce ve sonra) Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ve Brunauer-Emmet-Teller (BET) analizi ile karakterize edilmiştir. MPK-AK adsorbanının tekrar kullanılabilirlik çalışmaları adsorpsiyon-desorpsiyon döngüleri 3 kez tekrar edilerek değerlendirilmiştir. BET analiz sonuçlarından sentezlenen MPK-AK adsorbanının toplam gözenek hacmi (2.013 cm3/g), ortalama gözenek çapı (2.963 nm), özgül yüzey alanı (2358 m2/g) ile mezogözenekli yapıya sahip olduğu görülmüştür. Adsorpsiyon izoterm ve kinetik çalışmaları kesikli adsorpsiyon toplu deneyleri yapılarak belirlenmiştir. MPK-AK’ın maksimum adsorpsiyon kapasitesi TSL ve PST için sırasıyla 1250 mg/g ve 588 mg/g olarak hesaplanmış ve fiziksel adsorpsiyon olduğu sonucuna varılmıştır. Termodinamik sonuçlar TSL adsorpsiyonunun endotermik PST adsorpsiyonunun ise ekzotermik bir işlem olduğunu göstermiştir.

Ethical Statement

Yayımlanmak üzere sunduğum makalede, etik kurul onayı gerektiren bir çalışma yapılmadığını taahhüt ederim.

Thanks

Bu çalışma Burdur Mehmet Akif Ersoy Üniversitesi Fen-Edebiyat Fakültesi ve Selçuk Üniversitesi Fen Fakültesi Kimya Bölümü’nde gerçekleştirilmiştir. Destekleri için Prof. Dr. İlkay Hilal GÜBBÜK ve Prof. Dr. Yasin ARSLAN’a teşekkür ederim.

References

  • H. Karimi-Maleh, A. Ayati, R. Davoodi, B. Tanhaei, F. Karimi, S. Malekmohammedi, Y. Orooji, L. Fu, M. Sillanpaa, Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. Journal of Cleaner Production, 291, 125880, 2021. 10.1016/j.jclepro.2021.125880
  •    N.Y. Mlunguza, S. Ncube, P. Nokwethemba Mahlambi, L. Chimuka, L.M. Madikizela, Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. Journal of Environmental Chemical Engineering, 7, 103142, 2019. 10.1016/ j.jece.2019.103142
  •    M. Taheran, M. Naghdi, S.K. Brar, M. Verma, R.Y. Surampalli, Emerging contaminants: here today, there tomorrow! Environmental Nanotechnology, Monitoring & Management, 10, 122-126, 2018. 10.1016/j.enmm.2018.05.010
  •    O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, E.R. Bandala, Treatment technologies for emerging contaminants in water: a review. Chemical Engineering Journal, 323, 361-380, 2017. 10.1016/j.cej.2017.04.106
  •    A. Gil, N. Taoufik, A.M. García, S.A. Korili, Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environmental Technology, 40, 3017-3030, 2019. 10.1080/09593330.2018.1464066
  •    J. Żur, D. Wojcieszyńska, K. Hupert-Kocurek, A. Marchlewicz, U. Guzik, Paracetamol – toxicity, and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring the degradation pathway. Chemosphere, 206, 192-202, 2018. 10.1016/j.chemosphere.2018.04.179
  •    M. Şahin, M. Mısır, Y. Arslan, Removal of Amoxicillin Using a New Adsorbent: Silver Nanoparticle Modified With Poly(ε-Caprolactone)-Block-Poly(L-Lactide) Copolymer. Journal of Applied Polymer Science, 142: e56556, 2025. 10.1002/app.56556
  •    N. Delgado, A. Capparelli, A. Navarro, D. Marino, Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236, 301-308, 2019. 10.1016/j.jenvman.2019.01.116
  •    S. Zheng, X. Li, X. Zhang, W. Wang, S. Yuan Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin. Chemosphere, 182, 325-331, 2017. 10.1016/j.chemosphere.2017.05.042
  •   F.A. Beni, A. Gholami, M.N. Shahrak, A. Ayati, M. Sillanpää UV-Switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward Tetracycline degradation. Microporous Mesoporous Materials, 303, 110275, 2020. 10.1016/j.micromeso.2020.110275
  •   C.C.d. Escobar, Y.P. Moreno Ruiz, J.H.Z. dos Santos, L. Ye, Molecularly imprinted TiO2 photocatalysts for degradation of diclofenac in water, Colloids and Surfaces A, 538, 729-738, 2018. 10.1016/j.colsurfa.2017.11.044
  •   J. Park, N. Yamashita, C. Park, T. Shimono, D.M. Takeuchi, H. Tanaka, Removal characteristics of pharmaceuticals and personal care products: comparison between membrane bioreactor and various biological treatment processes, Chemosphere, 179, 347-358, 2017. 10.1016/j.chemosphere.2017.03.135
  •   S.M. Abtahi, L. Marbelia, A.Y. Gebreyohannes, P. Ahmadiannamini, C. Joannis-Cassan, C. Albasi, W.M. de Vos, I.F.J. Vankelecom, Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally–treated municipal wastewater, Separation and Purification Technology, 209, 470-481, 2019. 10.1016/j.seppur.2018.07.071
  •   L. Ling, Y. Liu, D. Pan, W. Lyu, X. Xu, X. Xiang, M. Lyu, L. Zhu, Catalytic detoxification of pharmaceutical wastewater by Fenton-like reaction with activated alumina supported CoMnAl composite metal oxides catalyst, Chemical Engineering Journal, 381, 122607, 2020. 10.1016/j.cej.2019.122607
  •   X. Zhou, C. Dong, Z. Yang, Z. Tian, L. Lu, W. Yang,Y. Wang, L. Zhang, A. Li, J. Chen, Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: effects of structural characteristics of both pharmaceuticals and brushes, Journal of Cleaner Production, 172, 1025-1034, 2018. 10.1016/j. jclepro.2017.10.207
  •   C.B. Alvim, V.R. Moreira, Y.A.R. Lebron, A.V. Santos, L.C. Lange, R.P.M. Moreira, L.V.de Souza Santos, M.C.S. Amaral, Comparison of UV, UV/H2O2 and ozonation processes for the treatment of membrane distillation concentrate from surface water treatment: PhACs removal and environmental and human health risk assessment, Chemical Engineering Journal, 397, 125482,2020.10.1016/j.cej.2020.125482
  •   J. Gomes, R.C. Rosa, M.Q.-F. Rui, C. Martins, Application of ozonation for pharmaceuticals and personal care products removal from water, Science of Total Environment, 586, 265-283, 2017. 10.1016/j.scitotenv.2017.01.216
  •   N. Taoufik, W. Boumya, F.Z. Janani, A. Elhalil, F.Z. Mahjoubi, N. Barka, Removal of emerging pharmaceutical pollutants: a systematic mapping study review, Journal of Environmental Chemical Engineering, 8 (5), 104251, 2020. 10.1016/j.jece.2020.104251
  •   B. Feier, A. Florea, C. Cristea, R. Săndulescu, Electrochemical detection and removal of pharmaceuticals in waste waters, Current Opinion in electrochemistry, 11, 1-11, 2018. 10.1016/j.coelec.2018.06.012
  •   M. Şahin, Y. Arslan, Adsorptive and oxidative removal of naproxen and diclofenac using Ag NPs, Cu NPs and Ag/Cu NPs. Research on Chemical Intermediates, 49, 3627-3643, 2023. 10.1007/s11164-023-05048-w
  •   D. Kanakaraju, B.D. Glass, M. Oelgemöller,Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, Journal of Environmental Management, 219, 189-207, 2018. 10.1016/j.jenvman.2018.04.103
  •   C.H.M. Hofman-Caris, W.G. Siegers, K.van de Merlen, A.W.A.de Man, J.A.M.H. Hofman, Removal of pharmaceuticals from WWTP effluent: removal of EfOM followed by advanced oxidation, Chemical Engineering Journal, 327, 514-521, 2021. 10.1016/j.cej.2017.06.154
  •   H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie, Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus brantii (Oak) acorn as a low-cost biosorbent, Journal of Environmental. Chemical Engineering, 6 (6), 6807-6815, 2018. 10.1016/j.jece.2018.10.047
  •   L. Sellaoui, E.C. Lima, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies, Journal of Molecular Liquids, 234, 375-381, 2017. 10.1016/j.molliq.2017.03.111
  •   F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions, Journal of Cleaner Production, 197 (1), 919-929, 2018. 10.1016/j. jclepro.2018.06.146
  •   S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review, Journal of Cleaner Production, 175, 361-375, 2018. 10.1016/j.jclepro.2017.12.059
  •   P.T.T. Ninh, L.T. Ngoc Tuyen, N.D. Dat, M.L. Nguyen, N.T. Dong, H.-P. Chao, H.N. Tran, Two-stage preparation of highly mesoporous carbon for super-adsorption of paracetamol and tetracycline in water: important contribution of pore filling and π-π interaction Environmental Research, 218, 114927, 2023. 10.1016/j.envres.2022.114927
  •   S.C.R. Marques, A.S. Mestre, M. Machuqueiro, A.Z. Gotvajn, M. Marinsek, A.P. Carvalho, Apple tree branches derived activated carbons for the removal of β-blocker atenolol, Chemical Engineering Journal, 345, 669-678, 2018. 10.1016/j.cej.2018.01.076
  •   M.R. Cunha, E.C. Lima, N.F.G.M. Cimirro, P.S. Thue, S.L.P. Dias, M.A. Gelesky, G.L. Dotto, G.S. dos Reis, F.A. Pavan, Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions, Environmental Science Pollution Research, 25, 23315-23327, 2018. 10.1007/s11356-018-2439-7
  •   M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, 1051-1069, 2015. 10.1515/pac-2014-1117
  •   C.A. Sáenz-Alanís, R.B. García-Reyes, E. Soto Regalado, A. García-González, Phenol and methylene blue adsorption on heat-treated activated carbon: characterization, kinetics, and equilibrium studies, Adsorption Science & Technology, 35, 789-805, 2017. 10.1177/0263617416684517
  •   Y.V. Fedoseeva, E.V. Lobiak, E.V. Shlyakhova, K.A. Kovalenko, V.R. Kuznetsova, A.A. Vorfolomeeva, M.A. Grebenkina, A.D. Nishchakova, A.A. Makarova, L.G. Blusheva, A.V. Okotrub, Hydrothermal activation of porous nitrogen-doped carbon materials for electrochemical capacitors and sodium-ion batteries, Nanomaterials, 10, 2163, 2020. 10.3390/nano10112163
  •   H.N. Tran, F. Tomul, N.T.H. Ha, D.T. Nguyen, E.C. Lima, G.T. Le, C-T Chang, V. Masindi, S.H. Woo, Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism, Journal of Hazardous Materials, 394, 122255, 2020. 10.1016/j.jhazmat.2020.122255
  •   O. Paunovic, S. Pap, S. Maletic, M.A. Taggart, N. Boskovic, M.T. Sekulic, Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass Journal of Colloid and Interface Science, 547, 350-360, 2019. 10.1016/j.jcis.2019.04.011
  •   D.T. Nguyen, H.N. Tran, R-S Juang, N.D. Dat, F. Tomul, A. Ivanets, S.H. Woo, A. Hosseini-Bandegharaei, V.P. Nguyen, H-P. Chao, Adsorption process and mechanism of acetaminophen onto commercial activated carbon Journal of Environmental Chemical Engineering, 8(6), 104408, 2020. 10.1016/j.jece.2020.104408
  •   D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123966, 2019. 10.1016/j.colsurfa.2019.123966
  •   M. H. Marzbali, M. Esmaieli, H. Abolghasemi, M. H. Marzbali, Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study, Process Safety and Environmental Protection, 102, 700-709, 2016. 10.1016/j.psep.2016.05.025
  •   A. Yazidi, M. Atrous, F.E. Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis, Chemical Engineering Journal, 379, 122320, 2020. 10.1016/j.cej.2019.122320

Adsorption of tetracycline and paracetamol using activated carbon derived from Ca(OH)2-treated corn waste

Year 2025, Volume: 14 Issue: 4

Abstract

The aim of this study was to develop a highly porous activated carbon (MPK-AC) from corn tassel and cob residues using a two-stage pyrolysis process with Ca(OH)2 as the activating agent and to investigate its application for the adsorption of tetracycline (TSL) and paracetamol (PST) from water. The optimal conditions for chemical activation were determined to be a temperature of 700 °C and a Ca(OH)₂-to-corn waste ratio of 3:1 (w/w). The MPK-AC adsorbent, both before and after adsorption, was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) surface area analysis. Reusability of the MPK-AC was evaluated through three consecutive adsorption–desorption cycles. BET analysis revealed that the synthesized MPK-AC exhibited a mesoporous structure with a total pore volume of 2.013 cm³/g, an average pore diameter of 2.963 nm, and a specific surface area of 2358 m²/g. Adsorption isotherms and kinetic behaviors were investigated through batch adsorption experiments. The maximum adsorption capacities of MPK-AC were calculated as 1250 mg/g for TSL and 588 mg/g for PST, indicating a physical adsorption mechanism. Thermodynamic results indicated that the adsorption of TSL was an endothermic process, whereas the adsorption of PST was exothermic.

References

  • H. Karimi-Maleh, A. Ayati, R. Davoodi, B. Tanhaei, F. Karimi, S. Malekmohammedi, Y. Orooji, L. Fu, M. Sillanpaa, Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. Journal of Cleaner Production, 291, 125880, 2021. 10.1016/j.jclepro.2021.125880
  •    N.Y. Mlunguza, S. Ncube, P. Nokwethemba Mahlambi, L. Chimuka, L.M. Madikizela, Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. Journal of Environmental Chemical Engineering, 7, 103142, 2019. 10.1016/ j.jece.2019.103142
  •    M. Taheran, M. Naghdi, S.K. Brar, M. Verma, R.Y. Surampalli, Emerging contaminants: here today, there tomorrow! Environmental Nanotechnology, Monitoring & Management, 10, 122-126, 2018. 10.1016/j.enmm.2018.05.010
  •    O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, E.R. Bandala, Treatment technologies for emerging contaminants in water: a review. Chemical Engineering Journal, 323, 361-380, 2017. 10.1016/j.cej.2017.04.106
  •    A. Gil, N. Taoufik, A.M. García, S.A. Korili, Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environmental Technology, 40, 3017-3030, 2019. 10.1080/09593330.2018.1464066
  •    J. Żur, D. Wojcieszyńska, K. Hupert-Kocurek, A. Marchlewicz, U. Guzik, Paracetamol – toxicity, and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring the degradation pathway. Chemosphere, 206, 192-202, 2018. 10.1016/j.chemosphere.2018.04.179
  •    M. Şahin, M. Mısır, Y. Arslan, Removal of Amoxicillin Using a New Adsorbent: Silver Nanoparticle Modified With Poly(ε-Caprolactone)-Block-Poly(L-Lactide) Copolymer. Journal of Applied Polymer Science, 142: e56556, 2025. 10.1002/app.56556
  •    N. Delgado, A. Capparelli, A. Navarro, D. Marino, Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236, 301-308, 2019. 10.1016/j.jenvman.2019.01.116
  •    S. Zheng, X. Li, X. Zhang, W. Wang, S. Yuan Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin. Chemosphere, 182, 325-331, 2017. 10.1016/j.chemosphere.2017.05.042
  •   F.A. Beni, A. Gholami, M.N. Shahrak, A. Ayati, M. Sillanpää UV-Switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward Tetracycline degradation. Microporous Mesoporous Materials, 303, 110275, 2020. 10.1016/j.micromeso.2020.110275
  •   C.C.d. Escobar, Y.P. Moreno Ruiz, J.H.Z. dos Santos, L. Ye, Molecularly imprinted TiO2 photocatalysts for degradation of diclofenac in water, Colloids and Surfaces A, 538, 729-738, 2018. 10.1016/j.colsurfa.2017.11.044
  •   J. Park, N. Yamashita, C. Park, T. Shimono, D.M. Takeuchi, H. Tanaka, Removal characteristics of pharmaceuticals and personal care products: comparison between membrane bioreactor and various biological treatment processes, Chemosphere, 179, 347-358, 2017. 10.1016/j.chemosphere.2017.03.135
  •   S.M. Abtahi, L. Marbelia, A.Y. Gebreyohannes, P. Ahmadiannamini, C. Joannis-Cassan, C. Albasi, W.M. de Vos, I.F.J. Vankelecom, Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally–treated municipal wastewater, Separation and Purification Technology, 209, 470-481, 2019. 10.1016/j.seppur.2018.07.071
  •   L. Ling, Y. Liu, D. Pan, W. Lyu, X. Xu, X. Xiang, M. Lyu, L. Zhu, Catalytic detoxification of pharmaceutical wastewater by Fenton-like reaction with activated alumina supported CoMnAl composite metal oxides catalyst, Chemical Engineering Journal, 381, 122607, 2020. 10.1016/j.cej.2019.122607
  •   X. Zhou, C. Dong, Z. Yang, Z. Tian, L. Lu, W. Yang,Y. Wang, L. Zhang, A. Li, J. Chen, Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: effects of structural characteristics of both pharmaceuticals and brushes, Journal of Cleaner Production, 172, 1025-1034, 2018. 10.1016/j. jclepro.2017.10.207
  •   C.B. Alvim, V.R. Moreira, Y.A.R. Lebron, A.V. Santos, L.C. Lange, R.P.M. Moreira, L.V.de Souza Santos, M.C.S. Amaral, Comparison of UV, UV/H2O2 and ozonation processes for the treatment of membrane distillation concentrate from surface water treatment: PhACs removal and environmental and human health risk assessment, Chemical Engineering Journal, 397, 125482,2020.10.1016/j.cej.2020.125482
  •   J. Gomes, R.C. Rosa, M.Q.-F. Rui, C. Martins, Application of ozonation for pharmaceuticals and personal care products removal from water, Science of Total Environment, 586, 265-283, 2017. 10.1016/j.scitotenv.2017.01.216
  •   N. Taoufik, W. Boumya, F.Z. Janani, A. Elhalil, F.Z. Mahjoubi, N. Barka, Removal of emerging pharmaceutical pollutants: a systematic mapping study review, Journal of Environmental Chemical Engineering, 8 (5), 104251, 2020. 10.1016/j.jece.2020.104251
  •   B. Feier, A. Florea, C. Cristea, R. Săndulescu, Electrochemical detection and removal of pharmaceuticals in waste waters, Current Opinion in electrochemistry, 11, 1-11, 2018. 10.1016/j.coelec.2018.06.012
  •   M. Şahin, Y. Arslan, Adsorptive and oxidative removal of naproxen and diclofenac using Ag NPs, Cu NPs and Ag/Cu NPs. Research on Chemical Intermediates, 49, 3627-3643, 2023. 10.1007/s11164-023-05048-w
  •   D. Kanakaraju, B.D. Glass, M. Oelgemöller,Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, Journal of Environmental Management, 219, 189-207, 2018. 10.1016/j.jenvman.2018.04.103
  •   C.H.M. Hofman-Caris, W.G. Siegers, K.van de Merlen, A.W.A.de Man, J.A.M.H. Hofman, Removal of pharmaceuticals from WWTP effluent: removal of EfOM followed by advanced oxidation, Chemical Engineering Journal, 327, 514-521, 2021. 10.1016/j.cej.2017.06.154
  •   H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie, Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus brantii (Oak) acorn as a low-cost biosorbent, Journal of Environmental. Chemical Engineering, 6 (6), 6807-6815, 2018. 10.1016/j.jece.2018.10.047
  •   L. Sellaoui, E.C. Lima, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies, Journal of Molecular Liquids, 234, 375-381, 2017. 10.1016/j.molliq.2017.03.111
  •   F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions, Journal of Cleaner Production, 197 (1), 919-929, 2018. 10.1016/j. jclepro.2018.06.146
  •   S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review, Journal of Cleaner Production, 175, 361-375, 2018. 10.1016/j.jclepro.2017.12.059
  •   P.T.T. Ninh, L.T. Ngoc Tuyen, N.D. Dat, M.L. Nguyen, N.T. Dong, H.-P. Chao, H.N. Tran, Two-stage preparation of highly mesoporous carbon for super-adsorption of paracetamol and tetracycline in water: important contribution of pore filling and π-π interaction Environmental Research, 218, 114927, 2023. 10.1016/j.envres.2022.114927
  •   S.C.R. Marques, A.S. Mestre, M. Machuqueiro, A.Z. Gotvajn, M. Marinsek, A.P. Carvalho, Apple tree branches derived activated carbons for the removal of β-blocker atenolol, Chemical Engineering Journal, 345, 669-678, 2018. 10.1016/j.cej.2018.01.076
  •   M.R. Cunha, E.C. Lima, N.F.G.M. Cimirro, P.S. Thue, S.L.P. Dias, M.A. Gelesky, G.L. Dotto, G.S. dos Reis, F.A. Pavan, Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions, Environmental Science Pollution Research, 25, 23315-23327, 2018. 10.1007/s11356-018-2439-7
  •   M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, 1051-1069, 2015. 10.1515/pac-2014-1117
  •   C.A. Sáenz-Alanís, R.B. García-Reyes, E. Soto Regalado, A. García-González, Phenol and methylene blue adsorption on heat-treated activated carbon: characterization, kinetics, and equilibrium studies, Adsorption Science & Technology, 35, 789-805, 2017. 10.1177/0263617416684517
  •   Y.V. Fedoseeva, E.V. Lobiak, E.V. Shlyakhova, K.A. Kovalenko, V.R. Kuznetsova, A.A. Vorfolomeeva, M.A. Grebenkina, A.D. Nishchakova, A.A. Makarova, L.G. Blusheva, A.V. Okotrub, Hydrothermal activation of porous nitrogen-doped carbon materials for electrochemical capacitors and sodium-ion batteries, Nanomaterials, 10, 2163, 2020. 10.3390/nano10112163
  •   H.N. Tran, F. Tomul, N.T.H. Ha, D.T. Nguyen, E.C. Lima, G.T. Le, C-T Chang, V. Masindi, S.H. Woo, Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism, Journal of Hazardous Materials, 394, 122255, 2020. 10.1016/j.jhazmat.2020.122255
  •   O. Paunovic, S. Pap, S. Maletic, M.A. Taggart, N. Boskovic, M.T. Sekulic, Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass Journal of Colloid and Interface Science, 547, 350-360, 2019. 10.1016/j.jcis.2019.04.011
  •   D.T. Nguyen, H.N. Tran, R-S Juang, N.D. Dat, F. Tomul, A. Ivanets, S.H. Woo, A. Hosseini-Bandegharaei, V.P. Nguyen, H-P. Chao, Adsorption process and mechanism of acetaminophen onto commercial activated carbon Journal of Environmental Chemical Engineering, 8(6), 104408, 2020. 10.1016/j.jece.2020.104408
  •   D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123966, 2019. 10.1016/j.colsurfa.2019.123966
  •   M. H. Marzbali, M. Esmaieli, H. Abolghasemi, M. H. Marzbali, Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study, Process Safety and Environmental Protection, 102, 700-709, 2016. 10.1016/j.psep.2016.05.025
  •   A. Yazidi, M. Atrous, F.E. Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis, Chemical Engineering Journal, 379, 122320, 2020. 10.1016/j.cej.2019.122320
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Waste Management, Reduction, Reuse and Recycling, Environmental Pollution and Prevention, Wastewater Treatment Processes, Water Treatment Processes
Journal Section Articles
Authors

Muradiye Şahin 0000-0002-5445-6682

Early Pub Date October 11, 2025
Publication Date October 14, 2025
Submission Date April 10, 2025
Acceptance Date October 10, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Şahin, M. (2025). Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Şahin M. Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu. NOHU J. Eng. Sci. October 2025;14(4).
Chicago Şahin, Muradiye. “Ca(OH)2 Ile Aktive Edilen Mısır Atıklarından üretilen Aktif Karbon Ile Tetrasiklin Ve Parasetamol Adsorpsiyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025).
EndNote Şahin M (October 1, 2025) Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE M. Şahin, “Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Şahin, Muradiye. “Ca(OH)2 Ile Aktive Edilen Mısır Atıklarından üretilen Aktif Karbon Ile Tetrasiklin Ve Parasetamol Adsorpsiyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025).
JAMA Şahin M. Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu. NOHU J. Eng. Sci. 2025;14.
MLA Şahin, Muradiye. “Ca(OH)2 Ile Aktive Edilen Mısır Atıklarından üretilen Aktif Karbon Ile Tetrasiklin Ve Parasetamol Adsorpsiyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Şahin M. Ca(OH)2 ile aktive edilen mısır atıklarından üretilen aktif karbon ile tetrasiklin ve parasetamol adsorpsiyonu. NOHU J. Eng. Sci. 2025;14(4).

download