Research Article
BibTex RIS Cite

CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi

Year 2025, Volume: 14 Issue: 4

Abstract

Elektrikli araç kullanımının dünya genelinde artması, yeni şarj istasyonu kurulumlarının ihtiyacını da ortaya çıkarmaktadır. Bu çalışmanın temel amacı günümüzde içten yanmalı motora sahip araçların yerini alan elektrikli araçların şarj istasyonları için uygun yer seçimi modelinin geliştirilmesidir. Bu amaç doğrultusunda Almanya’nın Münih ile İtalya’nın Milano şehirleri çalışma bölgesi olarak belirlenmiştir. Bu şehirlerin seçilmesinde elektrikli araç şarj istasyonlarının sayısının fazla olması ve ülkelerin trafik ve sürüş kültürü açısından Türkiye’ye benzerliği öne çıkmıştır. Çalışma kapsamında Coğrafi Bilgi Sistemleri (CBS) ile konumsal analizler yapılmış, Açıklanabilir Yapay Zeka (XAI) teknikleri ile regresyon analizi gerçekleştirilerek şarj istasyonları için en uygun yerlerin belirlenmesinde kullanılabilecek bir tahmin modeli geliştirilmiştir. Rastgele Orman yöntemiyle kriterlerin ağırlıkları belirlenmiş ve model doğruluğu Milano şehrinde %27 iken Münih şehrinde %87 olarak gözlemlenmiştir. Sonuç olarak elektrikli araç şarj istasyonları için mevcuttaki istasyonlara ait kullanım verisine dayalı çıkarımlar ile en uygun konumların seçiminde etkin kriterler belirlenmiştir. Böylelikle bu alandaki yatırımların karar destek sistemi ile yönlendirilmesi sağlanarak kaynakların etkin kullanılması, elektrikli araç sahiplerine uygun ulaşım altyapısının sunulması ile fosil yakıtlı araçlardan elektrikli araçlara geçişin kolaylaştırılması amaçlanmıştır.

References

  • International Energy Agency (IEA), CO2 emissions in 2022. https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030, Accessed 23 May 2025.
  •   S. S. Bilgilioğlu, Coğrafi bilgi sistemleri ve bulanık analitik hiyerarşi süreci ile elektrikli araç şarj istasyonu yer seçimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 2022. https://doi.org/10.35414/akufemubid.1013244.
  •   D. Guler and T. Yomralioglu, Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS. Annals of GIS, 26(2), 169–189, 2020. https://doi.org/10.1080/19475683.2020.1737226.
  •   Enerji Piyasası Düzenleme Kurumu (EPDK), Şarj hizmeti piyasası aylık istatistikleri - Mart 2025. https://www.epdk.gov.tr/Detay/Icerik/3-0-222/enerji-donusumusarj-hizmeti-piyasasi--istatistik#, Erişim tarihi 23 Mayıs 2025.
  •   Enerji Piyasası Düzenleme Kurumu (EPDK), ELEKTRİKLİ araç ve şarj altyapısı projeksiyonu. https://www.epdk.gov.tr/Detay/Icerik/4-14379/elektrikli-arac-ve-sarj-altyapisi-projeksiyonu-, Erişim tarihi 23 Mayıs 2025.
  •   C. Bian, H. Li, F. Wallin, A. Avelin, L. Lin and Z. Yu, Finding the optimal location for public charging stations – a GIS-based MILP approach. Energy Procedia, 158, 6582–6588, 2019. https://doi.org/10.1016/j.egypro.2019.01.071.
  •   M. H. Ghodusinejad, Y. Noorollahi and R. Zahedi, Optimal site selection, sizing of solar EV charge stations. Journal of Energy Storage, 56, 105904, 2022. https://doi.org/10.1016/j.est.2022.105904.
  •   A. Karaşan, İ. Kaya and M. Erdoğan, Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553–4574, 2020. https://doi.org/10.1007/s00521-018-3752-2.
  •   C. Karolemeas, S. Tsigdinos, P. G. Tzouras, A. Nikitas and E. Bakogiannis, Determining electric vehicle charging station location suitability: A qualitative study of greek stakeholders employing thematic analysis and analytical hierarchy process. Sustainability, 13(4), 2021. https://doi.org/10.3390/su13042298.
  • P. Keawthong, V. Muangsin and C. Gowanit, Location selection of charging stations for electric taxis: a Bangkok case. Sustainability, 14(17), 2022. https://doi.org/10.3390/su141711033.
  • Y. Wu, M. Yang, H. Zhang, K. Chen and Y. Wang, Optimal site selection of electric vehicle charging stations based on a cloud model, the PROMETHEE Method. Energies, 9(3), 2016. https://doi.org/10.3390/en9030157.
  • B. Csonka and C. Csiszár, Determination of charging infrastructure location for electric vehicles. Transportation Research Procedia, 27, 768–775, 2017. https://doi.org/10.1016/j.trpro.2017.12.115.
  • S. Micari, A. Polimeni, G. Napoli, L. Andaloro and V. Antonucci, Electric vehicle charging infrastructure planning in a road network. Renewable, Sustainable Energy Reviews, 80, 98–108, 2017. https://doi.org/10.1016/j.rser.2017.05.022.
  • M. Erbaş, M. Kabak, E. Özceylan and C. Çetinkaya, Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy, 163, 1017–1031, 2018. https://doi.org/10.1016/j.energy.2018.08.140.
  • G. Napoli, A. Polimeni, S. Micari, L. Andaloro and V. Antonucci, Optimal allocation of electric vehicle charging stations in a highway network: Part 1. Methodology, test application. Journal of Energy Storage, 27, 101102, 2020. https://doi.org/10.1016/j.est.2019.101102.
  • C. B. Aybirdi, Elektrikli araç şarj istasyonu lokasyonlarının çok ölçütlü karar verme teknikleri ile seçilmesi: Ankara’da vaka çalışması. Yüksek Lisans Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, 2021.
  • M. A. Anwarzai and K. Nagasaka, Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 71, 150–160, 2017. https://doi.org/10.1016/j.rser.2016.12.048.
  • A. Ghosh, N. Ghorui, S. P. Mondal, S. Kumari, B. K. Mondal, A. Das, and M. S. Gupta, Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics, 9(4), 2021, https://doi.org/10.3390/math9040393.
  • J. Raposo, A. Rodrigues, C. Silva and T. Dentinho, A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5), 057123, 2015, https://doi.org/10.1063/1.4921087.
  • B. Yagcitekin and M. Uzunoglu, A double-layer smart charging strategy of electric vehicles taking routing, charge scheduling into account. Applied Energy, 167, 407–419, 2016, https://doi.org/10.1016/j.apenergy.2015.09.040.
  • C. Csiszár, B. Csonka, D. Földes, E. Wirth and T. Lovas, Urban public charging station locating method for electric vehicles based on land use approach. Journal of Transport Geography, 74, 173–180, 2019, https://doi.org/10.1016/j.jtrangeo.2018.11.016.
  • G. Dong, J. Ma, R. Wei and J. Haycox, Electric vehicle charging point placement optimisation by exploiting spatial statistics and maximal coverage location models. Transportation Research Part D: Transport and Environment, 67, 77–88, 2019. https://doi.org/10.1016/j.trd.2018.11.005.
  • D. Guler and T. Yomralioglu, GIS and fuzzy AHP-based area selection for electric vehicle charging stations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–4, pp. 249–252, 2018. https://doi.org/10.5194/isprs-archives-XLII-4-249-2018.
  • S. Guo and H. Zhao, Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Applied Energy, 158, 390–402, 2015. https://doi.org/10.1016/j.apenergy.2015.08.082.
  • Y. He, K. M. Kockelman and K. A. Perrine, Optimal locations of U.S. fast charging stations for long-distance trip completion by battery electric vehicles. Journal of Cleaner Production, 214, 452–461, 2019. https://doi.org/10.1016/j.jclepro.2018.12.188.
  • J. Liu, J. Peper, G. Lin, Y. Zhou, S. Awasthi, Y. Li and C. Rehtanz, A planning strategy considering multiple factors for electric vehicle charging stations along German motorways. International Journal of Electrical Power & Energy Systems, 124, 106379, 2021. https://doi.org/10.1016/j.ijepes.2020.106379.
  • A. Mazza, A. Russo, G. Chicco, A. Di Martino, C. G. Colombo, M. Longo, P. Ciliento, M. De Donno, F. Mapelli and F. Lamberti, Categorization of attributes and features for the location of electric vehicle charging stations. Energies, 17(16), 2024. https://doi.org/10.3390/en17163920.
  • P. Soczówka, M. Lasota, P. Franke and R. Żochowska, Method of determining new locations for electric vehicle charging stations using GIS tools. Energies, 17(18), 2024. https://doi.org/10.3390/en17184546.
  • I. Ullah, J. Zheng, A. Jamal, M. Zahid, M. Almoshageh and M. Safdar, Electric vehicles charging infrastructure planning: A review. International Journal of Green Energy, 21(7), 1710–1728, 2024. https://doi.org/10.1080/15435075.2023.2259975.
  • Y. Zhang, Q. Zhang, A. Farnoosh, S. Chen and Y. Li, GIS-based multi-objective particle swarm optimization of charging stations for electric vehicles. Energy, 169, 844–853, 2019. https://doi.org/10.1016/j.energy.2018.12.062.
  • K. H. Mhana and H. A. Awad, An ideal location selection of electric vehicle charging stations: Employment of integrated analytical hierarchy process with geographical information system. Sustainable Cities and Society, 107, 105456, 2024. https://doi.org/10.1016/j.scs.2024.105456.
  • H. Iravani, A multicriteria GIS-based decision-making approach for locating electric vehicle charging stations. Transportation Engineering, 9, 100135, 2022. https://doi.org/10.1016/j.treng.2022.100135.
  • D. Guler and T. Yomralioglu, Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS. Annals of GIS, 26(2), 169–189, 2020. https://doi.org/10.1080/19475683.2020.1737226.
  • M. Mahdy, A. S. Bahaj, P. Turner, N. Wise, A. S. Alghamdi and H. Hamwi, Multi criteria decision analysis to optimise siting of electric vehicle charging points—Case study Winchester District, UK. Energies, 15(7), 2497, 2022. https://doi.org/10.3390/en15072497.
  • G. J. Carlton and S. Sultana, Electric vehicle charging station accessibility, land use clustering: A case study of the Chicago region. Journal of Urban Mobility, 2, 100019, 2022. https://doi.org/10.1016/j.urbmob.2022.100019.
  • S. Çelik and Ş. Ok, Electric vehicle charging stations: Model, algorithm, simulation, location, and capacity planning. Heliyon, 10(7), 2024. https://doi.org/10.1016/j.heliyon.2024.e29153.
  • P. Gauglitz, D. Geiger, J. Ulffers and E. Zauner, Modeling public charging infrastructure considering points of interest and parking potentials. Advances in Geosciences, 56, 1-12, 2021. https://doi.org/10.5194/adgeo-56-1-2021.
  • K. A. Momin, A. M. Sadri, K. K. Muraleetharan, R. Campos and P. S. Harvey, Application of multi-criteria decision analysis for optimal siting of electric vehicle charging stations in Oklahoma. Transportation Engineering, 20, 100325, 2025. https://doi.org/10.1016/j.treng.2025.100325.
  • J. Banegas and J. Mamkhezri, A systematic review of geographic information systems based methods and criteria used for electric vehicle charging station site selection. Environmental Science and Pollution Research, 30(26), 68054–68083, 2023. https://doi.org/10.1007/s11356-023-27383-6.
  • B. Hualing, Y. Gu, F. Lu and S. Mahreen, Site selection of electric vehicle charging station expansion based on GIS-FAHP-MABAC. Journal of Cleaner Production, 145557, 2025. https://doi.org/10.1016/j.jclepro.2025.145557.
  • Chargepoint, ChargePoint EV Data API. https://www.chargepoint.com, Accessed 21 February 2025.
  • U.S. Geological Survey (USGS), Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. 2018. https://doi.org/10.5066/F7PR7TFT.
  • U. M. Durdağ, M. S. Şen ve Z. Usta, Analitik Hiyerarşi Yöntemi ile En Uygun Okul Yer Seçim Analizi: Elazığ Merkez Örneği. Türk Uzaktan Algılama ve CBS Dergisi, 6(1), 82–95, 2025. https://doi.org/10.48123/rsgis.1603131.
  • M. O. Mete ve T. Yomralıoğlu, CBS ile nominal taşınmaz değer haritası üretiminde çözünürlük araştırması. Türkiye Arazi Yönetimi Dergisi, 1(1), 16-23, 2019.
  • B. Taştan ve E. Z. Bozkan, Rüzgâr enerji santrallerinin kuruluş yeri seçiminde CBS, çok kriterli karar verme analizi ve bulanık mantık yönteminin kullanılması: Kastamonu ili örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 172–190, 2025. https://doi.org/10.53433/yyufbed.1563665.
  • M. O. Mete and T. Yomralioglu, A hybrid approach for mass valuation of residential properties through geographic information systems and machine learning integration. Geographical Analysis, 55(4), 535–559, 2023. https://doi.org/10.1111/gean.12350.
  • F. Ocak ve M. Bahadır, Örnek taşkın risk modeli oluşturulması ve Ünye şehrindeki derelere ait taşkın risk analizleri. Journal of Academic Social Science Studies, 13(80), 2020.
  • N. Duman ve M. R. İrcan, Coğrafi bilgi sistemleri ve uzaktan algılama tabanında Çankırı Merkez ilçesinin erozyon risk analizi, Coğrafi Bilimler Dergisi, 20(1), 220–245, 2022. https://doi.org/10.33688/aucbd.1074770.
  • M. Özcanli, A. Güzel ve B. Akgün, Şanlıurfa İli’nde kurulu GES’lerin topoğrafik özellikler (yükselti, eğim, bakı) açısından uygunluk analizi. Türk Coğrafya Dergisi, (78), 127–144, 2021. https://doi.org/10.17211/tcd.997146.
  • K. Tyagi, C. Rane, Harshvardhan, M. Manry, Regression Analysis. in Artificial Intelligence and Machine Learning for EDGE Computing, R. Pandey, S. K. Khatri, N. K. Singh, and P. Verma, Eds. Academic Press, pp. 53–63, 2022. https://doi.org/10.1016/B978-0-12-824054-0.00007-1.
  • J. H. Park, H. S. Jo, S. H. Lee, S. W. Oh and M. G. Na, A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP. Nuclear Engineering and Technology, 54(4), 1271–1287, 2022. https://doi.org/10.1016/j.net.2021.10.024.

Determination of location selection criteria of electric vehicle charging stations with GIS and machine learning

Year 2025, Volume: 14 Issue: 4

Abstract

As the use of electric vehicles increases worldwide, the need for new charging station installations arises. The main objective of this study is to develop a suitable location selection model for electric vehicle charging stations, which are replacing vehicles with internal combustion engines nowadays. For this purpose, Munich, Germany, and Milan, Italy, have been selected as the study areas. The selection of these cities is based on the high number of electric vehicle charging stations and the similarity of these cities to Türkiye in terms of traffic and driving culture. Within the scope of the study, spatial analysis is performed with Geographic Information Systems (GIS), regression analysis is performed with Explainable Artificial Intelligence (XAI) techniques, and a model that can be used to determine the most suitable locations for charging stations is developed. The weights of the criteria are determined using the Random Forest method, and the model accuracy is observed to be 27% in Milan and 87% in Munich. As a result, the criteria that are effective for selecting the most suitable locations for electric vehicle charging stations have been determined with inferences based on the utilization data of existing stations. Thus, it aims to facilitate the transition from fossil fuel vehicles to electric vehicles by ensuring the efficient use of resources by directing investments in this field with a decision support system and providing suitable transportation infrastructure for electric vehicle owners.

References

  • International Energy Agency (IEA), CO2 emissions in 2022. https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030, Accessed 23 May 2025.
  •   S. S. Bilgilioğlu, Coğrafi bilgi sistemleri ve bulanık analitik hiyerarşi süreci ile elektrikli araç şarj istasyonu yer seçimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 2022. https://doi.org/10.35414/akufemubid.1013244.
  •   D. Guler and T. Yomralioglu, Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS. Annals of GIS, 26(2), 169–189, 2020. https://doi.org/10.1080/19475683.2020.1737226.
  •   Enerji Piyasası Düzenleme Kurumu (EPDK), Şarj hizmeti piyasası aylık istatistikleri - Mart 2025. https://www.epdk.gov.tr/Detay/Icerik/3-0-222/enerji-donusumusarj-hizmeti-piyasasi--istatistik#, Erişim tarihi 23 Mayıs 2025.
  •   Enerji Piyasası Düzenleme Kurumu (EPDK), ELEKTRİKLİ araç ve şarj altyapısı projeksiyonu. https://www.epdk.gov.tr/Detay/Icerik/4-14379/elektrikli-arac-ve-sarj-altyapisi-projeksiyonu-, Erişim tarihi 23 Mayıs 2025.
  •   C. Bian, H. Li, F. Wallin, A. Avelin, L. Lin and Z. Yu, Finding the optimal location for public charging stations – a GIS-based MILP approach. Energy Procedia, 158, 6582–6588, 2019. https://doi.org/10.1016/j.egypro.2019.01.071.
  •   M. H. Ghodusinejad, Y. Noorollahi and R. Zahedi, Optimal site selection, sizing of solar EV charge stations. Journal of Energy Storage, 56, 105904, 2022. https://doi.org/10.1016/j.est.2022.105904.
  •   A. Karaşan, İ. Kaya and M. Erdoğan, Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553–4574, 2020. https://doi.org/10.1007/s00521-018-3752-2.
  •   C. Karolemeas, S. Tsigdinos, P. G. Tzouras, A. Nikitas and E. Bakogiannis, Determining electric vehicle charging station location suitability: A qualitative study of greek stakeholders employing thematic analysis and analytical hierarchy process. Sustainability, 13(4), 2021. https://doi.org/10.3390/su13042298.
  • P. Keawthong, V. Muangsin and C. Gowanit, Location selection of charging stations for electric taxis: a Bangkok case. Sustainability, 14(17), 2022. https://doi.org/10.3390/su141711033.
  • Y. Wu, M. Yang, H. Zhang, K. Chen and Y. Wang, Optimal site selection of electric vehicle charging stations based on a cloud model, the PROMETHEE Method. Energies, 9(3), 2016. https://doi.org/10.3390/en9030157.
  • B. Csonka and C. Csiszár, Determination of charging infrastructure location for electric vehicles. Transportation Research Procedia, 27, 768–775, 2017. https://doi.org/10.1016/j.trpro.2017.12.115.
  • S. Micari, A. Polimeni, G. Napoli, L. Andaloro and V. Antonucci, Electric vehicle charging infrastructure planning in a road network. Renewable, Sustainable Energy Reviews, 80, 98–108, 2017. https://doi.org/10.1016/j.rser.2017.05.022.
  • M. Erbaş, M. Kabak, E. Özceylan and C. Çetinkaya, Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy, 163, 1017–1031, 2018. https://doi.org/10.1016/j.energy.2018.08.140.
  • G. Napoli, A. Polimeni, S. Micari, L. Andaloro and V. Antonucci, Optimal allocation of electric vehicle charging stations in a highway network: Part 1. Methodology, test application. Journal of Energy Storage, 27, 101102, 2020. https://doi.org/10.1016/j.est.2019.101102.
  • C. B. Aybirdi, Elektrikli araç şarj istasyonu lokasyonlarının çok ölçütlü karar verme teknikleri ile seçilmesi: Ankara’da vaka çalışması. Yüksek Lisans Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, 2021.
  • M. A. Anwarzai and K. Nagasaka, Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 71, 150–160, 2017. https://doi.org/10.1016/j.rser.2016.12.048.
  • A. Ghosh, N. Ghorui, S. P. Mondal, S. Kumari, B. K. Mondal, A. Das, and M. S. Gupta, Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics, 9(4), 2021, https://doi.org/10.3390/math9040393.
  • J. Raposo, A. Rodrigues, C. Silva and T. Dentinho, A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5), 057123, 2015, https://doi.org/10.1063/1.4921087.
  • B. Yagcitekin and M. Uzunoglu, A double-layer smart charging strategy of electric vehicles taking routing, charge scheduling into account. Applied Energy, 167, 407–419, 2016, https://doi.org/10.1016/j.apenergy.2015.09.040.
  • C. Csiszár, B. Csonka, D. Földes, E. Wirth and T. Lovas, Urban public charging station locating method for electric vehicles based on land use approach. Journal of Transport Geography, 74, 173–180, 2019, https://doi.org/10.1016/j.jtrangeo.2018.11.016.
  • G. Dong, J. Ma, R. Wei and J. Haycox, Electric vehicle charging point placement optimisation by exploiting spatial statistics and maximal coverage location models. Transportation Research Part D: Transport and Environment, 67, 77–88, 2019. https://doi.org/10.1016/j.trd.2018.11.005.
  • D. Guler and T. Yomralioglu, GIS and fuzzy AHP-based area selection for electric vehicle charging stations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–4, pp. 249–252, 2018. https://doi.org/10.5194/isprs-archives-XLII-4-249-2018.
  • S. Guo and H. Zhao, Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Applied Energy, 158, 390–402, 2015. https://doi.org/10.1016/j.apenergy.2015.08.082.
  • Y. He, K. M. Kockelman and K. A. Perrine, Optimal locations of U.S. fast charging stations for long-distance trip completion by battery electric vehicles. Journal of Cleaner Production, 214, 452–461, 2019. https://doi.org/10.1016/j.jclepro.2018.12.188.
  • J. Liu, J. Peper, G. Lin, Y. Zhou, S. Awasthi, Y. Li and C. Rehtanz, A planning strategy considering multiple factors for electric vehicle charging stations along German motorways. International Journal of Electrical Power & Energy Systems, 124, 106379, 2021. https://doi.org/10.1016/j.ijepes.2020.106379.
  • A. Mazza, A. Russo, G. Chicco, A. Di Martino, C. G. Colombo, M. Longo, P. Ciliento, M. De Donno, F. Mapelli and F. Lamberti, Categorization of attributes and features for the location of electric vehicle charging stations. Energies, 17(16), 2024. https://doi.org/10.3390/en17163920.
  • P. Soczówka, M. Lasota, P. Franke and R. Żochowska, Method of determining new locations for electric vehicle charging stations using GIS tools. Energies, 17(18), 2024. https://doi.org/10.3390/en17184546.
  • I. Ullah, J. Zheng, A. Jamal, M. Zahid, M. Almoshageh and M. Safdar, Electric vehicles charging infrastructure planning: A review. International Journal of Green Energy, 21(7), 1710–1728, 2024. https://doi.org/10.1080/15435075.2023.2259975.
  • Y. Zhang, Q. Zhang, A. Farnoosh, S. Chen and Y. Li, GIS-based multi-objective particle swarm optimization of charging stations for electric vehicles. Energy, 169, 844–853, 2019. https://doi.org/10.1016/j.energy.2018.12.062.
  • K. H. Mhana and H. A. Awad, An ideal location selection of electric vehicle charging stations: Employment of integrated analytical hierarchy process with geographical information system. Sustainable Cities and Society, 107, 105456, 2024. https://doi.org/10.1016/j.scs.2024.105456.
  • H. Iravani, A multicriteria GIS-based decision-making approach for locating electric vehicle charging stations. Transportation Engineering, 9, 100135, 2022. https://doi.org/10.1016/j.treng.2022.100135.
  • D. Guler and T. Yomralioglu, Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS. Annals of GIS, 26(2), 169–189, 2020. https://doi.org/10.1080/19475683.2020.1737226.
  • M. Mahdy, A. S. Bahaj, P. Turner, N. Wise, A. S. Alghamdi and H. Hamwi, Multi criteria decision analysis to optimise siting of electric vehicle charging points—Case study Winchester District, UK. Energies, 15(7), 2497, 2022. https://doi.org/10.3390/en15072497.
  • G. J. Carlton and S. Sultana, Electric vehicle charging station accessibility, land use clustering: A case study of the Chicago region. Journal of Urban Mobility, 2, 100019, 2022. https://doi.org/10.1016/j.urbmob.2022.100019.
  • S. Çelik and Ş. Ok, Electric vehicle charging stations: Model, algorithm, simulation, location, and capacity planning. Heliyon, 10(7), 2024. https://doi.org/10.1016/j.heliyon.2024.e29153.
  • P. Gauglitz, D. Geiger, J. Ulffers and E. Zauner, Modeling public charging infrastructure considering points of interest and parking potentials. Advances in Geosciences, 56, 1-12, 2021. https://doi.org/10.5194/adgeo-56-1-2021.
  • K. A. Momin, A. M. Sadri, K. K. Muraleetharan, R. Campos and P. S. Harvey, Application of multi-criteria decision analysis for optimal siting of electric vehicle charging stations in Oklahoma. Transportation Engineering, 20, 100325, 2025. https://doi.org/10.1016/j.treng.2025.100325.
  • J. Banegas and J. Mamkhezri, A systematic review of geographic information systems based methods and criteria used for electric vehicle charging station site selection. Environmental Science and Pollution Research, 30(26), 68054–68083, 2023. https://doi.org/10.1007/s11356-023-27383-6.
  • B. Hualing, Y. Gu, F. Lu and S. Mahreen, Site selection of electric vehicle charging station expansion based on GIS-FAHP-MABAC. Journal of Cleaner Production, 145557, 2025. https://doi.org/10.1016/j.jclepro.2025.145557.
  • Chargepoint, ChargePoint EV Data API. https://www.chargepoint.com, Accessed 21 February 2025.
  • U.S. Geological Survey (USGS), Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. 2018. https://doi.org/10.5066/F7PR7TFT.
  • U. M. Durdağ, M. S. Şen ve Z. Usta, Analitik Hiyerarşi Yöntemi ile En Uygun Okul Yer Seçim Analizi: Elazığ Merkez Örneği. Türk Uzaktan Algılama ve CBS Dergisi, 6(1), 82–95, 2025. https://doi.org/10.48123/rsgis.1603131.
  • M. O. Mete ve T. Yomralıoğlu, CBS ile nominal taşınmaz değer haritası üretiminde çözünürlük araştırması. Türkiye Arazi Yönetimi Dergisi, 1(1), 16-23, 2019.
  • B. Taştan ve E. Z. Bozkan, Rüzgâr enerji santrallerinin kuruluş yeri seçiminde CBS, çok kriterli karar verme analizi ve bulanık mantık yönteminin kullanılması: Kastamonu ili örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 172–190, 2025. https://doi.org/10.53433/yyufbed.1563665.
  • M. O. Mete and T. Yomralioglu, A hybrid approach for mass valuation of residential properties through geographic information systems and machine learning integration. Geographical Analysis, 55(4), 535–559, 2023. https://doi.org/10.1111/gean.12350.
  • F. Ocak ve M. Bahadır, Örnek taşkın risk modeli oluşturulması ve Ünye şehrindeki derelere ait taşkın risk analizleri. Journal of Academic Social Science Studies, 13(80), 2020.
  • N. Duman ve M. R. İrcan, Coğrafi bilgi sistemleri ve uzaktan algılama tabanında Çankırı Merkez ilçesinin erozyon risk analizi, Coğrafi Bilimler Dergisi, 20(1), 220–245, 2022. https://doi.org/10.33688/aucbd.1074770.
  • M. Özcanli, A. Güzel ve B. Akgün, Şanlıurfa İli’nde kurulu GES’lerin topoğrafik özellikler (yükselti, eğim, bakı) açısından uygunluk analizi. Türk Coğrafya Dergisi, (78), 127–144, 2021. https://doi.org/10.17211/tcd.997146.
  • K. Tyagi, C. Rane, Harshvardhan, M. Manry, Regression Analysis. in Artificial Intelligence and Machine Learning for EDGE Computing, R. Pandey, S. K. Khatri, N. K. Singh, and P. Verma, Eds. Academic Press, pp. 53–63, 2022. https://doi.org/10.1016/B978-0-12-824054-0.00007-1.
  • J. H. Park, H. S. Jo, S. H. Lee, S. W. Oh and M. G. Na, A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP. Nuclear Engineering and Technology, 54(4), 1271–1287, 2022. https://doi.org/10.1016/j.net.2021.10.024.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Machine Learning (Other), Geospatial Information Systems and Geospatial Data Modelling, Geographical Information Systems (GIS) in Planning
Journal Section Articles
Authors

Muhammed Oğuzhan Mete 0000-0002-9312-1965

Early Pub Date October 5, 2025
Publication Date October 14, 2025
Submission Date May 24, 2025
Acceptance Date October 3, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Mete, M. O. (2025). CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Mete MO. CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi. NOHU J. Eng. Sci. October 2025;14(4).
Chicago Mete, Muhammed Oğuzhan. “CBS Ve Makine öğrenmesi Ile Elektrikli Araç şarj Istasyonlarının Yer Seçimine Etki Eden Kriterlerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025).
EndNote Mete MO (October 1, 2025) CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE M. O. Mete, “CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Mete, Muhammed Oğuzhan. “CBS Ve Makine öğrenmesi Ile Elektrikli Araç şarj Istasyonlarının Yer Seçimine Etki Eden Kriterlerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025).
JAMA Mete MO. CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi. NOHU J. Eng. Sci. 2025;14.
MLA Mete, Muhammed Oğuzhan. “CBS Ve Makine öğrenmesi Ile Elektrikli Araç şarj Istasyonlarının Yer Seçimine Etki Eden Kriterlerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Mete MO. CBS ve makine öğrenmesi ile elektrikli araç şarj istasyonlarının yer seçimine etki eden kriterlerin belirlenmesi. NOHU J. Eng. Sci. 2025;14(4).

download