Research Article
BibTex RIS Cite

A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam

Year 2025, Volume: 14 Issue: 4

Abstract

This work intends to numerically investigate the impacts of bonding carbon fibre reinforced polymer (CFRP) laminates to either the web or the flange of 6061-T6 aluminium alloy I-beam on the lateral torsional buckling (LTB) characteristic. The effect of laminate thickness, fibre orientation angle, laminate length, and laminate location was examined. In all hybrid I-beams, web and flange thicknesses were kept equal to those of aluminium (Reference) I-beam. Finite element (FE) models of aluminium and aluminium/CFRP hybrid I-beams were developed using Abaqus/Standard. Model verification was carried out by comparison of the numerical findings with experimental results available in the existing literature. A strong concordance was observed between the experimental and numerical findings, with a relative error of 3.3% at the critical LTB bending moment (Mcr). Attaching a 3 mm-thick CFRP laminate, aligned at 0° fibre orientation, to the flange of an I-beam increases the Mcr by 47.5% compared to the aluminium I-beam.

References

  • D. Sonck and J. Belis, Elastic lateral-torsional buckling of glass beams with continuous lateral restraints. Glass Structures & Engineering, 1(1), 173–194, 2016. https://doi.org/10.1007/s40940-016-0023-4.
  • F. M. Mazzolani, Structural applications of aluminium in civil engineering. Structural Engineering International, 16(4), 280–285, 2006. https://doi.org/10.2749/101686606778995128.
  • B. R. Russell and A. P. Thrall, Portable and rapidly deployable bridges: Historical perspective and recent technology developments. Journal of Bridge Engineering, 18(10), 1074–1085, 2013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000454.
  • D. Skejić, M. Lukić, N. Buljan and H. Vido, Lateral torsional buckling of split aluminium mullion. Key Engineering Materials, 710, 445–450, 2016. https://doi.org/10.4028/www.scientific.net/KEM.710.445.
  • Y. Q. Wang, H. X. Yuan, Y. J. Shi and M. Cheng, Lateral-torsional buckling resistance of aluminium I-beams. Thin-Walled Structures, 50(1), 24–36, 2012. https://doi.org/10.1016/j.tws.2011.07.005.
  • X. Guo, Z. Xiong and Z. Shen, Flexural-torsional buckling behavior of aluminum alloy beams. Frontiers of Structural and Civil Engineering, 9(2), 163–175, 2015. https://doi.org/10.1007/s11709-014-0272-8.
  • C. Faella, F. M. Mazzolani, V. Piluso and G. Rizzano, Local buckling of aluminum members: Testing and classification. Journal of Structural Engineering, 126(3), 353–360, 2000. https://doi.org/10.1061/(AS CE)07339445(2000)126:3(353).
  • Y. Zhang, Y. Bu, Y. Wang, Z. Wang and Y. Ouyang, Study of flexural–torsional buckling behaviour of 6061-T6 aluminium alloy unequal-leg angle columns. Thin-Walled Structures, 164, 107821, 2021. https://doi.org/10.1016/j.tws.2021.107821.
  • Y. Q. Wang, Z. X. Wang, X. G. Hu, J. K. Han and H. J. Xing, Experimental study and parametric analysis on the stability behavior of 7A04 high-strength aluminum alloy angle columns under axial compression. Thin-Walled Structures, 108, 305–320, 2016. https://doi.org/10.1016/j.tws.2016.08.029.
  • Z. Xu, Y. Zhang, L. Zhang, Y. Chen and G. Tong, Experimental and numerical investigation of axially loaded aluminium alloy angle struts with lateral bracing on one leg. Thin-Walled Structures, 213, 113310, 2025. https://doi.org/10.1016/j.tws.2025.113310.
  • N. M. F. Silva, D. Camotim, N. Silvestre, J. R. Correia and F. A. Branco, First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 2: Numerical simulation. Computers & Structures, 89(21–22), 2065–2078, 2011. https://doi.org/10.1016/j.co mpstruc.2011.07.006.
  • J. R. Correia, F. A. Branco, N. M. F. Silva, D. Camotim and N. Silvestre, First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 1: Experimental study. Computers & Structures, 89(21–22), 2052–2064, 2011. https://doi.org/10.10 16/j.compstruc.2011.07.005.
  • J. T. Mottram, Lateral-torsional buckling of a pultruded I-beam. Composites, 23(2), 81–92, 1992. https://doi.org/10.1016/0010-4361(92)90108-7.
  • J. F. Davalos and P. Qiao, Analytical and experimental study of lateral and distortional buckling of FRP wide-flange beams. Journal of Composites for Construction, 1(4), 150–159, 1997. https://doi.org/10.10 61/(ASCE)10900268(1997)1:4(150).
  • G. J. Turvey, Effects of load position on the lateral buckling response of pultruded GRP cantilevers — Comparisons between theory and experiment. Composite Structures, 35(1), 33–47, 1996. https://doi.org/10.1016/0263-8223(96)00022-0.
  • P. Qiao, G. Zou and J. F. Davalos, Flexural–torsional buckling of fiber-reinforced plastic composite cantilever I-beams. Composite Structures, 60(2), 205–217, 2003. https://doi.org/10.1016/S02638223(02)0 0304-5.
  • J. Lee, S.-E. Kim and K. Hong, Lateral buckling of I-section composite beams. Engineering Structures, 24(7), 955–964, 2002. https://doi.org/10.1016/S0141-0296(02)00016-0.
  • V. Kahya, Buckling analysis of laminated composite and sandwich beams by the finite element method. Composites Part B: Engineering, 91, 126–134, 2016. https://doi.org/10.1016/j.compositesb.2016.01.031.
  • E. J. Barbero and I. G. Raftoyiannis, Local buckling of FRP beams and columns. Journal of Materials in Civil Engineering, 5(3), 339–355, 1993. https://doi.org/10.1061/(ASCE)08991561(1993)5:3(339).
  • P. Van Pham, M. Mohareb and A. Fam, Lateral torsional buckling of steel beams strengthened with GFRP plate. Thin-Walled Structures, 131, 55–75, 2018. https://doi.org/10.1016/j.tws.2018.06.025.
  • P. Van Pham, An innovated theory and closed form solutions for the elastic lateral torsional buckling analysis of steel beams/columns strengthened with symmetrically balanced GFRP laminates. Engineering Structures, 256, 114046, 2022. https://doi.org/10.10 16/j.engstruct.2022.114046.
  • P. Van. Pham, Enhancement of moment resistance of steel beams with initial imperfections and residual stresses by using stiffeners and GFRP plates. Journal of Materials and Engineering Structures, 7(4), Article 4, 2020.
  • E. Ghafoori and M. Motavalli, Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different pre-stress levels: Experimental and numerical study. Construction and Building Materials, 76, 194–206, 2015. https://doi.org/10.1016/j.conbuildmat.2014.11.070.
  • K. A. Harries, A. J. Peck and E. J. Abraham, Enhancing stability of structural steel sections using FRP. Thin-Walled Structures, 47(10), 1092–1101, 2009. https://doi.org/10.1016/j.tws.2008.10.007.
  • N. B. Accord and C. J. Earls, Use of fiber-reinforced polymer composite elements to enhance structural steel member ductility. Journal of Composites for Construction, 10(4), 337–344, 2006. https://doi.org/10.1061/(ASCE)10900268(2006)10:4(337).
  • A. A. E. Damatty, M. Abushagur and M. A. Youssef, Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets. Journal of Materials and Engineering Structures, 3(6), Article 6, 2003.
  • P. Lacki and A. Derlatka, Influence of PU foam reinforcement of I-beam on buckling resistance. Composite Structures, 202, 201–209, 2018. https://doi.org/10.1016/j.compstruct.2018.01.050.
  • P. Lacki, A. Derlatka and J. Winowiecka, Analysis of the composite I-beam reinforced with PU foam with the addition of chopped glass fiber. Composite Structures, 218, 60–70, 2019. https://doi.org/10.10 16/j.compstruct.2019.03.036
  • J. Xu, Q. Zhao and P. Qiao, A critical review on buckling and post-buckling analysis of composite structures. Frontiers in Aerospace Engineering, 2(3), 157–168, 2013.
  • M. Z. Kabir and A. E. Seif, Lateral-Torsional Buckling of Retrofitted Steel I-Beams Using FRP Sheets. Scientia Iranica, 17(4), 262-272, 2010.
  • U. A. Girhammar and D. H. Pan, Exact static analysis of partially composite beams and beam-columns. International Journal of Mechanical Sciences, 49(2), 239-255, 2007. https://doi:10.1016/j.ijmecsci.20 06.07.005.
  • M. A. Youssef, Analytical prediction of the linear and nonlinear behaviour of steel beams rehabilitated using FRP sheets. Engineering Structures, 28(6), 903-911, 2006. https://doi:10.1016/j.engstruct.2005.10.018.
  • K. J. Wong, X. J. Gong, S. Aivazzadeh and M. N. Tamin, Tensile behaviour of anti-symmetric CFRP composite. Procedia Engineering, 10, 1865–1870, 2011. https://doi.org/10.1016/j.proeng.2011.04.310.
  • Z. Hashin, Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2), 329–334, 1980. https://doi.org/10.1115/1.3153664.
  • Dassault Systèmes Simulia Corp., Abaqus 2016 documentation. https://130.149.89.49:2080/v2016/in dex.html, Accessed 13 June 2025.
  • J.-O. Majid and M. S. Mohammad Reza, Investigation of defect effects on adhesively bonded joint strength using cohesive zone modeling. Strojnícky časopis – Journal of Mechanical Engineering, 68(3), 5–24, 2018. https://doi.org/10.2478/scjme-2018-0023.
  • H. Taş, Investigation of the defect effects on the load-carrying capacity of butt joints: A numerical study. Hittite Journal of Science and Engineering, 11(3), Article 3, 2024. https://doi.org/10.17350/HJ SE19030000337.
  • A. Rahmani and N. Choupani, Experimental and numerical analysis of fracture parameters of adhesively bonded joints at low temperatures. Engineering Fracture Mechanics, 207, 222–236, 2019. https://doi.org/10.1016/j.engfracmech.2018.12.031.
  • M. Soltani, A Novel Approach for Lateral Buckling Assessment of Double Tapered Thin-Walled Laminated Composite I-Beams. Mechanics of Advanced Composite Structures, 9(1), 11-23, 2022. https://doi:10.22075/macs.2021.22105.1313.
  • A. Lenwari, T. Thepchatri and P. Albrecht, Flexural response of steel beams strengthened with partial-length CFRP plates. Journal of Composites for Construction, 9(4), 296–303, 2005. https://doi.org/10.1061/(ASCE)10900268(2005)9:4(296).
  • P. Van Pham, M. Mohareb and A. Fam, Numerical and analytical investigation for ultimate capacity of steel beams strengthened with GFRP plates. Engineering Structures, 243, 112668, 2021. https://doi.org/10.10 16/j.engstruct.2021.112668.

Alüminyum/KETP hibrit I-kirişin yanal burulma burkulma davranışı üzerine nümerik bir çalışma

Year 2025, Volume: 14 Issue: 4

Abstract

Bu çalışma, karbon elyaf takviyeli polimer (KETP) laminatların 6061-T6 alüminyum alaşımlı I-kirişin gövdesine veya flanşına yapıştırılmasının yanal burulma burkulması (YBB) davranışına etkilerini nümerik olarak incelemeyi amaçlamaktadır. Laminat kalınlığı, fiber açısı, laminat uzunluğu ve laminat konumunun etkisi incelenmiştir. Tüm hibrit I-kirişlerde, gövde ve flanş kalınlıkları alüminyum (Referans) I-kiriş ile aynı tutulmuştur. Alüminyum ve alüminyum/CFRP hibrit kirişlerin sonlu eleman (SE) modelleri Abaqus/Standard kullanılarak oluşturulmuştur. Model doğrulaması, sayısal sonuçların mevcut literatürdeki deneysel sonuçlarla karşılaştırılmasıyla yapılmıştır. Kritik YBB eğilme momentinde (Mkr) %3.3 göreli hata ile sayısal ve deneysel sonuçlar arasında güçlü bir uyum gözlenmiştir. 0° fiber açısına sahip 3 mm kalınlığında KETP laminatın I-kirişin flanşına yapıştırılması, Mkr değerini alüminyum I-kirişe kıyasla %47.5 artırmaktadır.

References

  • D. Sonck and J. Belis, Elastic lateral-torsional buckling of glass beams with continuous lateral restraints. Glass Structures & Engineering, 1(1), 173–194, 2016. https://doi.org/10.1007/s40940-016-0023-4.
  • F. M. Mazzolani, Structural applications of aluminium in civil engineering. Structural Engineering International, 16(4), 280–285, 2006. https://doi.org/10.2749/101686606778995128.
  • B. R. Russell and A. P. Thrall, Portable and rapidly deployable bridges: Historical perspective and recent technology developments. Journal of Bridge Engineering, 18(10), 1074–1085, 2013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000454.
  • D. Skejić, M. Lukić, N. Buljan and H. Vido, Lateral torsional buckling of split aluminium mullion. Key Engineering Materials, 710, 445–450, 2016. https://doi.org/10.4028/www.scientific.net/KEM.710.445.
  • Y. Q. Wang, H. X. Yuan, Y. J. Shi and M. Cheng, Lateral-torsional buckling resistance of aluminium I-beams. Thin-Walled Structures, 50(1), 24–36, 2012. https://doi.org/10.1016/j.tws.2011.07.005.
  • X. Guo, Z. Xiong and Z. Shen, Flexural-torsional buckling behavior of aluminum alloy beams. Frontiers of Structural and Civil Engineering, 9(2), 163–175, 2015. https://doi.org/10.1007/s11709-014-0272-8.
  • C. Faella, F. M. Mazzolani, V. Piluso and G. Rizzano, Local buckling of aluminum members: Testing and classification. Journal of Structural Engineering, 126(3), 353–360, 2000. https://doi.org/10.1061/(AS CE)07339445(2000)126:3(353).
  • Y. Zhang, Y. Bu, Y. Wang, Z. Wang and Y. Ouyang, Study of flexural–torsional buckling behaviour of 6061-T6 aluminium alloy unequal-leg angle columns. Thin-Walled Structures, 164, 107821, 2021. https://doi.org/10.1016/j.tws.2021.107821.
  • Y. Q. Wang, Z. X. Wang, X. G. Hu, J. K. Han and H. J. Xing, Experimental study and parametric analysis on the stability behavior of 7A04 high-strength aluminum alloy angle columns under axial compression. Thin-Walled Structures, 108, 305–320, 2016. https://doi.org/10.1016/j.tws.2016.08.029.
  • Z. Xu, Y. Zhang, L. Zhang, Y. Chen and G. Tong, Experimental and numerical investigation of axially loaded aluminium alloy angle struts with lateral bracing on one leg. Thin-Walled Structures, 213, 113310, 2025. https://doi.org/10.1016/j.tws.2025.113310.
  • N. M. F. Silva, D. Camotim, N. Silvestre, J. R. Correia and F. A. Branco, First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 2: Numerical simulation. Computers & Structures, 89(21–22), 2065–2078, 2011. https://doi.org/10.1016/j.co mpstruc.2011.07.006.
  • J. R. Correia, F. A. Branco, N. M. F. Silva, D. Camotim and N. Silvestre, First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 1: Experimental study. Computers & Structures, 89(21–22), 2052–2064, 2011. https://doi.org/10.10 16/j.compstruc.2011.07.005.
  • J. T. Mottram, Lateral-torsional buckling of a pultruded I-beam. Composites, 23(2), 81–92, 1992. https://doi.org/10.1016/0010-4361(92)90108-7.
  • J. F. Davalos and P. Qiao, Analytical and experimental study of lateral and distortional buckling of FRP wide-flange beams. Journal of Composites for Construction, 1(4), 150–159, 1997. https://doi.org/10.10 61/(ASCE)10900268(1997)1:4(150).
  • G. J. Turvey, Effects of load position on the lateral buckling response of pultruded GRP cantilevers — Comparisons between theory and experiment. Composite Structures, 35(1), 33–47, 1996. https://doi.org/10.1016/0263-8223(96)00022-0.
  • P. Qiao, G. Zou and J. F. Davalos, Flexural–torsional buckling of fiber-reinforced plastic composite cantilever I-beams. Composite Structures, 60(2), 205–217, 2003. https://doi.org/10.1016/S02638223(02)0 0304-5.
  • J. Lee, S.-E. Kim and K. Hong, Lateral buckling of I-section composite beams. Engineering Structures, 24(7), 955–964, 2002. https://doi.org/10.1016/S0141-0296(02)00016-0.
  • V. Kahya, Buckling analysis of laminated composite and sandwich beams by the finite element method. Composites Part B: Engineering, 91, 126–134, 2016. https://doi.org/10.1016/j.compositesb.2016.01.031.
  • E. J. Barbero and I. G. Raftoyiannis, Local buckling of FRP beams and columns. Journal of Materials in Civil Engineering, 5(3), 339–355, 1993. https://doi.org/10.1061/(ASCE)08991561(1993)5:3(339).
  • P. Van Pham, M. Mohareb and A. Fam, Lateral torsional buckling of steel beams strengthened with GFRP plate. Thin-Walled Structures, 131, 55–75, 2018. https://doi.org/10.1016/j.tws.2018.06.025.
  • P. Van Pham, An innovated theory and closed form solutions for the elastic lateral torsional buckling analysis of steel beams/columns strengthened with symmetrically balanced GFRP laminates. Engineering Structures, 256, 114046, 2022. https://doi.org/10.10 16/j.engstruct.2022.114046.
  • P. Van. Pham, Enhancement of moment resistance of steel beams with initial imperfections and residual stresses by using stiffeners and GFRP plates. Journal of Materials and Engineering Structures, 7(4), Article 4, 2020.
  • E. Ghafoori and M. Motavalli, Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different pre-stress levels: Experimental and numerical study. Construction and Building Materials, 76, 194–206, 2015. https://doi.org/10.1016/j.conbuildmat.2014.11.070.
  • K. A. Harries, A. J. Peck and E. J. Abraham, Enhancing stability of structural steel sections using FRP. Thin-Walled Structures, 47(10), 1092–1101, 2009. https://doi.org/10.1016/j.tws.2008.10.007.
  • N. B. Accord and C. J. Earls, Use of fiber-reinforced polymer composite elements to enhance structural steel member ductility. Journal of Composites for Construction, 10(4), 337–344, 2006. https://doi.org/10.1061/(ASCE)10900268(2006)10:4(337).
  • A. A. E. Damatty, M. Abushagur and M. A. Youssef, Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets. Journal of Materials and Engineering Structures, 3(6), Article 6, 2003.
  • P. Lacki and A. Derlatka, Influence of PU foam reinforcement of I-beam on buckling resistance. Composite Structures, 202, 201–209, 2018. https://doi.org/10.1016/j.compstruct.2018.01.050.
  • P. Lacki, A. Derlatka and J. Winowiecka, Analysis of the composite I-beam reinforced with PU foam with the addition of chopped glass fiber. Composite Structures, 218, 60–70, 2019. https://doi.org/10.10 16/j.compstruct.2019.03.036
  • J. Xu, Q. Zhao and P. Qiao, A critical review on buckling and post-buckling analysis of composite structures. Frontiers in Aerospace Engineering, 2(3), 157–168, 2013.
  • M. Z. Kabir and A. E. Seif, Lateral-Torsional Buckling of Retrofitted Steel I-Beams Using FRP Sheets. Scientia Iranica, 17(4), 262-272, 2010.
  • U. A. Girhammar and D. H. Pan, Exact static analysis of partially composite beams and beam-columns. International Journal of Mechanical Sciences, 49(2), 239-255, 2007. https://doi:10.1016/j.ijmecsci.20 06.07.005.
  • M. A. Youssef, Analytical prediction of the linear and nonlinear behaviour of steel beams rehabilitated using FRP sheets. Engineering Structures, 28(6), 903-911, 2006. https://doi:10.1016/j.engstruct.2005.10.018.
  • K. J. Wong, X. J. Gong, S. Aivazzadeh and M. N. Tamin, Tensile behaviour of anti-symmetric CFRP composite. Procedia Engineering, 10, 1865–1870, 2011. https://doi.org/10.1016/j.proeng.2011.04.310.
  • Z. Hashin, Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2), 329–334, 1980. https://doi.org/10.1115/1.3153664.
  • Dassault Systèmes Simulia Corp., Abaqus 2016 documentation. https://130.149.89.49:2080/v2016/in dex.html, Accessed 13 June 2025.
  • J.-O. Majid and M. S. Mohammad Reza, Investigation of defect effects on adhesively bonded joint strength using cohesive zone modeling. Strojnícky časopis – Journal of Mechanical Engineering, 68(3), 5–24, 2018. https://doi.org/10.2478/scjme-2018-0023.
  • H. Taş, Investigation of the defect effects on the load-carrying capacity of butt joints: A numerical study. Hittite Journal of Science and Engineering, 11(3), Article 3, 2024. https://doi.org/10.17350/HJ SE19030000337.
  • A. Rahmani and N. Choupani, Experimental and numerical analysis of fracture parameters of adhesively bonded joints at low temperatures. Engineering Fracture Mechanics, 207, 222–236, 2019. https://doi.org/10.1016/j.engfracmech.2018.12.031.
  • M. Soltani, A Novel Approach for Lateral Buckling Assessment of Double Tapered Thin-Walled Laminated Composite I-Beams. Mechanics of Advanced Composite Structures, 9(1), 11-23, 2022. https://doi:10.22075/macs.2021.22105.1313.
  • A. Lenwari, T. Thepchatri and P. Albrecht, Flexural response of steel beams strengthened with partial-length CFRP plates. Journal of Composites for Construction, 9(4), 296–303, 2005. https://doi.org/10.1061/(ASCE)10900268(2005)9:4(296).
  • P. Van Pham, M. Mohareb and A. Fam, Numerical and analytical investigation for ultimate capacity of steel beams strengthened with GFRP plates. Engineering Structures, 243, 112668, 2021. https://doi.org/10.10 16/j.engstruct.2021.112668.
There are 41 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Modelling and Mechanical Characterisation, Composite and Hybrid Materials
Journal Section Articles
Authors

Hamza Taş 0000-0002-6527-338X

Early Pub Date August 14, 2025
Publication Date October 14, 2025
Submission Date June 29, 2025
Acceptance Date July 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Taş, H. (2025). A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Taş H. A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam. NOHU J. Eng. Sci. August 2025;14(4).
Chicago Taş, Hamza. “A Numerical Study on the Lateral Torsional Buckling Behaviour of Aluminium CFRP Hybrid I-Beam”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (August 2025).
EndNote Taş H (August 1, 2025) A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE H. Taş, “A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Taş, Hamza. “A Numerical Study on the Lateral Torsional Buckling Behaviour of Aluminium CFRP Hybrid I-Beam”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (August2025).
JAMA Taş H. A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam. NOHU J. Eng. Sci. 2025;14.
MLA Taş, Hamza. “A Numerical Study on the Lateral Torsional Buckling Behaviour of Aluminium CFRP Hybrid I-Beam”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Taş H. A numerical study on the lateral torsional buckling behaviour of aluminium/CFRP hybrid I-beam. NOHU J. Eng. Sci. 2025;14(4).

download