Research Article
BibTex RIS Cite

Tekstil takviyeli harçlarla güçlendirilen beton kirişlerin eğilme performansı: Uygulama deseni ve onarım harcı tipinin etkisi

Year 2025, Volume: 14 Issue: 4

Abstract

Bu çalışma, normal dayanımlı beton kirişlerin eğilme performansını iyileştirmek amacıyla yüksek fırın cürufu bazlı geopolimer harcı ve çimento esaslı ticari bir tamir harcı kullanılarak üretilen tekstil donatılı harç (TRM) sistemlerinin etkinliğini incelemiştir. TRM uygulamaları farklı desen ve kaplama oranlarıyla değerlendirilmiş; ayrıca karşılaştırma amacıyla beton karışımlarına %0.3 ve %0.6 oranlarında çelik lif katkısı ilave edilmiştir. Eğilme dayanımı, yük-deplasman davranışı, rijitlik, süneklik ve enerji yutma kapasitesi gibi parametreler üzerinden yapılan değerlendirmeler sonucunda; tam yüzey TRM uygulamalarının taşıma kapasitesini %24'e varan oranda artırdığı, geopolimer esaslı TRM sistemlerinin ise hem sınırlı hem de tam kaplama koşullarında çimento esaslı sistemlerle kıyaslanabilir hatta üstün performans gösterebildiği ortaya konmuştur. %0.6 lif katkısı ise süneklik ve enerji yutma açısından sınırlı iyileştirme sağlarken, rijitlikte belirgin bir azalmaya neden olmuştur. Elde edilen sonuçlar, özellikle doğru kaplama deseni ve bağlayıcı seçimiyle uygulanan TRM sistemlerinin betonarme elemanların eğilme davranışını iyileştirmede etkili ve sürdürülebilir bir yöntem olduğunu ortaya koymuştur.

References

  • A. T. Balasbaneh, W. Sher, D. Yeoh, and K. Koushfar, LCA & LCC analysis of hybrid glued laminated Timber–Concrete composite floor slab system, Journal of Building Engineering, 49, 104005, 2022. https://doi.org/10.1016/j.jobe.2022.104005.
  • B. Luccioni and V. C. Rougier, In-plane retrofitting of masonry panels with fibre reinforced composite materials. Construction and Building Materials, 25, 4, 1772–1788, 2011. https://doi.org/10.1016/j.conbuildmat.2010.11.088.
  • L. N. Koutas and C. G. Papakonstantinou, Flexural strengthening of RC beams with textile-reinforced mortar composites focusing on the influence of the mortar type. Engineering Structures, 246, 113060, 2021. https://doi.org/10.1016/j.engstruct.2021.113060.
  • A. E. Alexander and A. P. Shashikala, Behavior of RC beams rehabilitated using carbon textile reinforced geopolymer mortar in flexure. Structures, 107522, 2024, https://doi.org/10.1016/j.istruc.2024.107522.
  • A. R. Boğa, C. Karakurt and A. F. Şenol, The effect of elevated temperature on the properties of SCC’s produced with different types of fibers. Construction and Building Materials, 340, 2022. https://doi.org/10.1016/j.conbuildmat.2022.127803.
  • W. Wang, A. Shen, Z. Lyu, Z. He, and K. T. Nguyen, Fresh and rheological characteristics of fiber reinforced concrete--A review. Construction and Building Materials, 296, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123734.
  • B. Sun, P. Wang, J. Guo, Y. Zheng, P. Zhang, J. Wang, and J. Tan, Intelligent mix design of steel fiber reinforced concrete using a particle swarm algorithm based on a multi-objective optimization model. Journal of Building Engineering. 96, 2024. https://doi.org/10.1016/j.jobe.2024.110653.
  • M. R. Valluzzi, C. Modena, and G. de Felice, Current practice and open issues in strengthening historical buildings with composites. Materials and Structures. 47, 12, 1971–1985, 2014, https://doi.org/10.1617/s11527-014-0359-7.
  • P. E. Mezrea, Tarihi Tuğla Duvarların Tekstil Donatılı Harç (TRM) ile Güçlendirilmesi. Master Thesis, İstanbul Teknik University, Institue of Science, Turkey, 2014.
  • S. M. Raoof, L. N. Koutas, and D. A. Bournas, Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation. Composites Part B: Engineering. 98, 350–361, 2016. https://doi.org/10.1016/j.compositesb.2016.05.041.
  • A. Dalalbashi, B. Ghiassi, D. V. Oliveira, and A. Freitas, Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration. Composites Part B: Engineering. 152, 43–57, 2018. https://doi.org/10.1016/j.compositesb.2018.06.014.
  • K. Heins, K. Magdalena, L. Olbrueck, M. Matthias, G. Thomas, A. Kolkmann, G. Ryu, G. Ahn, and H. Kim, Long-term bonding and tensile strengths of carbon textile reinforced mortar. Materials, 13, 20, 2020. https://doi.org/10.3390/ma13204485.
  • Ö. Mercimek, R. Ghoroubi, A. Özdemir, Ö. Anil, and Y. Erbaş, Investigation of strengthened low slenderness RC column by using textile reinforced mortar strip under axial load. Eng Struct, 259, 114191, 2022. https://doi.org/10.1016/j.engstruct.2022.114191.
  • S. Cholostiakow, L. N. Koutas, and C. G. Papakonstantinou, Geopolymer versus cement-based textile-reinforced mortar: Diagonal compression tests on masonry walls representative of infills in RC frames. Constr Build Mater, 373, 130836, 2023. https://doi.org/10.1016/j.conbuildmat.2023.130836.
  • X. Yang, S. Wu, S. Xu, B. Chen, D. Chen, F. Wang, J. Jiang, L. Fan and L. Tu, Effects of GBFS content and curing methods on the working performance and microstructure of ternary geopolymers based on high-content steel slag. Construction and Building Materials, 410, 2024. https://doi.org/10.1016/j.conbuildmat.2023.134128.
  • A. F. Şenol, Performance of geopolymer mortar incorporating spent coffee grounds as a recycled building material: An experimental and predictive analysis. Hybrid Advances, 10, 100479, 2025. https://doi.org/10.1016/j.hybadv.2025.100479.
  • Ö. F. Kuranlı, M. Uysal, M. T. Abbas, T. Cosgun, A. Niş, Y. Aygörmez, O. Canpolat, M. Al-mashhadani, Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr Build Mater, 325, 126747, 2022. https://doi.org/10.1016/j.conbuildmat.2022.126747.
  • F. Apaydin, A. F. Şenol, M. Kandemir, and A. Ozer, The effect of cupola furnace iron slag on the physical and mechanical properties of alkali-activated fly ash-based mortars. Journal of the Australian Ceramic Society, 2025. https://doi.org/10.1007/s41779-025-01213-z.
  • H. Y. Zhang, H. Y. Liu, V. Kodur, M. Y. Li, and Y. Zhou, Flexural behavior of concrete slabs strengthened with textile reinforced geopolymer mortar. Composite Structures, 284, 115220, 2022. https://doi.org/10.1016/j.compstruct.2022.115220.
  • urkish Standards Institute. TS EN 196-1, Methods of Testing Cement - Part 1, Determination of strength, Ankara, 2016.
  • A. Khaloo, E. M. Raisi, P. Hosseini, and H. Tahsiri, Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials, 51, 179-186, 2014. https://doi.org/10.1016/j.conbuildmat.2013.10.054.
  • A. H. Jin, J. S. Woo, H. D. Yun, S. W. Kim, W. S. Park, and W. C. Choi, Influence of concrete strength and fiber properties on residual flexural strength of steel fiber-reinforced concrete. Construction and Building Materials, 489, 2025. https://doi.org/10.1016/j.conbuildmat.2025.142366.
  • Turkish Standards Institute. TS 802, Design of concrete mixes. Ankara, 2016.
  • M. Sarıdemir and S. Çelikten, Effects of Ms modulus, Na concentration and fly ash content on properties of vapour-cured geopolymer mortars exposed to high temperatures. Constr Build Mater, 363, 129868, 2023. https://doi.org/10.1016/j.conbuildmat.2022.129868.
  • A.F. Şenol, and Ö. Çalışkan, Recycling bio-waste into durable green mortars: Effects of eggshell powder on strength, microstructure, and durability. Sustainable Chemistry and Pharmacy, 46, 2025. https://doi.org/10.1016/j.scp.2025.102119.
  • C. Karakurt, A. F. Şenol, and N. Ç. Demiral, Effects of curing temperatures and waste marble aggregates on the properties of geopolymer mortars produced with industrial by-products and waste baked clay powders. Advanced Powder Technology, 36(7), 2025. https://doi.org/10.1016/j.apt.2025.104946.
  • Turkish Standards Institute. TS EN 1015-3, Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table), Ankara, 2006.
  • Turkish Standards Institute. TS EN 1015-11, Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. Ankara, 2020.
  • TS EN 12390-5 Testing Hardened Concrete - Part 5: Flexural Strength of Test Specimens, Ankara., 2019.
  • Y. Zhou, H. Lei, X. Chang, Y. Duan, F. Lu, and T. Li, Experimental study on the performance of special-shaped columns composited with HGM-filled square steel tube under axial compression. Journal of Constructional Steel Research, 204, 107813, 2023, https://doi.org/10.1016/j.jcsr.2023.107813.
  • X. Bao, Y. Li, X. Chen, H. Yang, and H. Cui, Investigation on the flexural behaviour and crack propagation of hybrid steel fibre reinforced concrete with a low fibre content for tunnel structures. Construction Building Materials, 417, 2024. https://doi.org/10.1016/j.conbuildmat.2024.135253.
  • Z. Guo, Z. Xu, F. Li, L. Lu, and O. Geng, Flexural static and high-cycle fatigue behavior of steel fiber-reinforced ultra-high-performance concrete. Journal of Building Engineering, 105, 2025. https://doi.org/10.1016/j.jobe.2025.112550.
  • J. Donnini, A. Mobili, G. Maracchini, G. Chiappini, F. Tittarelli, and V. Corinaldesi. A multi-performance comparison between lime, cementitious and alkali-activated TRM systems: Mechanical, environmental and energy perspectives. Construction Building Materials, 440, 2024. https://doi.org/10.1016/j.conbuildmat.2024.137396.
  • Ö. Mercimek, A. Çelik, R. Ghoroubi, and Ö. Anıl, Retrofitting of squat RC column by using TRM strip under axial load. Structures, 60, 2024. https://doi.org/10.1016/j.istruc.2024.105909.

Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type

Year 2025, Volume: 14 Issue: 4

Abstract

This study examines the effectiveness of textile-reinforced mortar (TRM) systems incorporating a ground granulated blast furnace slag-based geopolymer mortar and a commercially available cement-based repair mortar in enhancing the flexural performance of normal-strength concrete beams. TRM applications were implemented with varying coverage patterns and surface areas, while steel fibers were added to the concrete mixtures at dosages of 0.3% and 0.6% by volume for comparative purposes. Experimental evaluations—including flexural strength, load–displacement behavior, initial stiffness, ductility, and energy dissipation capacity—revealed that full-coverage TRM applications enhanced load-bearing capacity by up to 24%. Geopolymer-based TRM systems exhibited comparable or even superior performance to their cement-based counterparts under both full and partial coverage conditions. While the incorporation of 0.6% steel fiber contributed to modest improvements in ductility and energy absorption, it also resulted in a significant reduction in initial stiffness. These findings highlight that TRM systems—particularly when applied with optimized coverage geometry and appropriate binder type—constitute an effective and sustainable strategy for improving the flexural response of reinforced concrete elements.

Supporting Institution

Yoktur.

References

  • A. T. Balasbaneh, W. Sher, D. Yeoh, and K. Koushfar, LCA & LCC analysis of hybrid glued laminated Timber–Concrete composite floor slab system, Journal of Building Engineering, 49, 104005, 2022. https://doi.org/10.1016/j.jobe.2022.104005.
  • B. Luccioni and V. C. Rougier, In-plane retrofitting of masonry panels with fibre reinforced composite materials. Construction and Building Materials, 25, 4, 1772–1788, 2011. https://doi.org/10.1016/j.conbuildmat.2010.11.088.
  • L. N. Koutas and C. G. Papakonstantinou, Flexural strengthening of RC beams with textile-reinforced mortar composites focusing on the influence of the mortar type. Engineering Structures, 246, 113060, 2021. https://doi.org/10.1016/j.engstruct.2021.113060.
  • A. E. Alexander and A. P. Shashikala, Behavior of RC beams rehabilitated using carbon textile reinforced geopolymer mortar in flexure. Structures, 107522, 2024, https://doi.org/10.1016/j.istruc.2024.107522.
  • A. R. Boğa, C. Karakurt and A. F. Şenol, The effect of elevated temperature on the properties of SCC’s produced with different types of fibers. Construction and Building Materials, 340, 2022. https://doi.org/10.1016/j.conbuildmat.2022.127803.
  • W. Wang, A. Shen, Z. Lyu, Z. He, and K. T. Nguyen, Fresh and rheological characteristics of fiber reinforced concrete--A review. Construction and Building Materials, 296, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123734.
  • B. Sun, P. Wang, J. Guo, Y. Zheng, P. Zhang, J. Wang, and J. Tan, Intelligent mix design of steel fiber reinforced concrete using a particle swarm algorithm based on a multi-objective optimization model. Journal of Building Engineering. 96, 2024. https://doi.org/10.1016/j.jobe.2024.110653.
  • M. R. Valluzzi, C. Modena, and G. de Felice, Current practice and open issues in strengthening historical buildings with composites. Materials and Structures. 47, 12, 1971–1985, 2014, https://doi.org/10.1617/s11527-014-0359-7.
  • P. E. Mezrea, Tarihi Tuğla Duvarların Tekstil Donatılı Harç (TRM) ile Güçlendirilmesi. Master Thesis, İstanbul Teknik University, Institue of Science, Turkey, 2014.
  • S. M. Raoof, L. N. Koutas, and D. A. Bournas, Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation. Composites Part B: Engineering. 98, 350–361, 2016. https://doi.org/10.1016/j.compositesb.2016.05.041.
  • A. Dalalbashi, B. Ghiassi, D. V. Oliveira, and A. Freitas, Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration. Composites Part B: Engineering. 152, 43–57, 2018. https://doi.org/10.1016/j.compositesb.2018.06.014.
  • K. Heins, K. Magdalena, L. Olbrueck, M. Matthias, G. Thomas, A. Kolkmann, G. Ryu, G. Ahn, and H. Kim, Long-term bonding and tensile strengths of carbon textile reinforced mortar. Materials, 13, 20, 2020. https://doi.org/10.3390/ma13204485.
  • Ö. Mercimek, R. Ghoroubi, A. Özdemir, Ö. Anil, and Y. Erbaş, Investigation of strengthened low slenderness RC column by using textile reinforced mortar strip under axial load. Eng Struct, 259, 114191, 2022. https://doi.org/10.1016/j.engstruct.2022.114191.
  • S. Cholostiakow, L. N. Koutas, and C. G. Papakonstantinou, Geopolymer versus cement-based textile-reinforced mortar: Diagonal compression tests on masonry walls representative of infills in RC frames. Constr Build Mater, 373, 130836, 2023. https://doi.org/10.1016/j.conbuildmat.2023.130836.
  • X. Yang, S. Wu, S. Xu, B. Chen, D. Chen, F. Wang, J. Jiang, L. Fan and L. Tu, Effects of GBFS content and curing methods on the working performance and microstructure of ternary geopolymers based on high-content steel slag. Construction and Building Materials, 410, 2024. https://doi.org/10.1016/j.conbuildmat.2023.134128.
  • A. F. Şenol, Performance of geopolymer mortar incorporating spent coffee grounds as a recycled building material: An experimental and predictive analysis. Hybrid Advances, 10, 100479, 2025. https://doi.org/10.1016/j.hybadv.2025.100479.
  • Ö. F. Kuranlı, M. Uysal, M. T. Abbas, T. Cosgun, A. Niş, Y. Aygörmez, O. Canpolat, M. Al-mashhadani, Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr Build Mater, 325, 126747, 2022. https://doi.org/10.1016/j.conbuildmat.2022.126747.
  • F. Apaydin, A. F. Şenol, M. Kandemir, and A. Ozer, The effect of cupola furnace iron slag on the physical and mechanical properties of alkali-activated fly ash-based mortars. Journal of the Australian Ceramic Society, 2025. https://doi.org/10.1007/s41779-025-01213-z.
  • H. Y. Zhang, H. Y. Liu, V. Kodur, M. Y. Li, and Y. Zhou, Flexural behavior of concrete slabs strengthened with textile reinforced geopolymer mortar. Composite Structures, 284, 115220, 2022. https://doi.org/10.1016/j.compstruct.2022.115220.
  • urkish Standards Institute. TS EN 196-1, Methods of Testing Cement - Part 1, Determination of strength, Ankara, 2016.
  • A. Khaloo, E. M. Raisi, P. Hosseini, and H. Tahsiri, Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials, 51, 179-186, 2014. https://doi.org/10.1016/j.conbuildmat.2013.10.054.
  • A. H. Jin, J. S. Woo, H. D. Yun, S. W. Kim, W. S. Park, and W. C. Choi, Influence of concrete strength and fiber properties on residual flexural strength of steel fiber-reinforced concrete. Construction and Building Materials, 489, 2025. https://doi.org/10.1016/j.conbuildmat.2025.142366.
  • Turkish Standards Institute. TS 802, Design of concrete mixes. Ankara, 2016.
  • M. Sarıdemir and S. Çelikten, Effects of Ms modulus, Na concentration and fly ash content on properties of vapour-cured geopolymer mortars exposed to high temperatures. Constr Build Mater, 363, 129868, 2023. https://doi.org/10.1016/j.conbuildmat.2022.129868.
  • A.F. Şenol, and Ö. Çalışkan, Recycling bio-waste into durable green mortars: Effects of eggshell powder on strength, microstructure, and durability. Sustainable Chemistry and Pharmacy, 46, 2025. https://doi.org/10.1016/j.scp.2025.102119.
  • C. Karakurt, A. F. Şenol, and N. Ç. Demiral, Effects of curing temperatures and waste marble aggregates on the properties of geopolymer mortars produced with industrial by-products and waste baked clay powders. Advanced Powder Technology, 36(7), 2025. https://doi.org/10.1016/j.apt.2025.104946.
  • Turkish Standards Institute. TS EN 1015-3, Methods of test for mortar for masonry- Part 3: Determination of consistence of fresh mortar (by flow table), Ankara, 2006.
  • Turkish Standards Institute. TS EN 1015-11, Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. Ankara, 2020.
  • TS EN 12390-5 Testing Hardened Concrete - Part 5: Flexural Strength of Test Specimens, Ankara., 2019.
  • Y. Zhou, H. Lei, X. Chang, Y. Duan, F. Lu, and T. Li, Experimental study on the performance of special-shaped columns composited with HGM-filled square steel tube under axial compression. Journal of Constructional Steel Research, 204, 107813, 2023, https://doi.org/10.1016/j.jcsr.2023.107813.
  • X. Bao, Y. Li, X. Chen, H. Yang, and H. Cui, Investigation on the flexural behaviour and crack propagation of hybrid steel fibre reinforced concrete with a low fibre content for tunnel structures. Construction Building Materials, 417, 2024. https://doi.org/10.1016/j.conbuildmat.2024.135253.
  • Z. Guo, Z. Xu, F. Li, L. Lu, and O. Geng, Flexural static and high-cycle fatigue behavior of steel fiber-reinforced ultra-high-performance concrete. Journal of Building Engineering, 105, 2025. https://doi.org/10.1016/j.jobe.2025.112550.
  • J. Donnini, A. Mobili, G. Maracchini, G. Chiappini, F. Tittarelli, and V. Corinaldesi. A multi-performance comparison between lime, cementitious and alkali-activated TRM systems: Mechanical, environmental and energy perspectives. Construction Building Materials, 440, 2024. https://doi.org/10.1016/j.conbuildmat.2024.137396.
  • Ö. Mercimek, A. Çelik, R. Ghoroubi, and Ö. Anıl, Retrofitting of squat RC column by using TRM strip under axial load. Structures, 60, 2024. https://doi.org/10.1016/j.istruc.2024.105909.
There are 34 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Özlem Çalışkan 0000-0002-5272-9552

Ahmet Ferdi Şenol 0000-0002-6663-3340

Early Pub Date September 19, 2025
Publication Date October 10, 2025
Submission Date June 29, 2025
Acceptance Date July 24, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Çalışkan, Ö., & Şenol, A. F. (2025). Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Çalışkan Ö, Şenol AF. Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type. NOHU J. Eng. Sci. September 2025;14(4).
Chicago Çalışkan, Özlem, and Ahmet Ferdi Şenol. “Flexural Performance of Concrete Beams Strengthened With Textile Reinforced Mortars: Influence of Application Pattern and Repair Mortar Type”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (September 2025).
EndNote Çalışkan Ö, Şenol AF (September 1, 2025) Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE Ö. Çalışkan and A. F. Şenol, “Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Çalışkan, Özlem - Şenol, Ahmet Ferdi. “Flexural Performance of Concrete Beams Strengthened With Textile Reinforced Mortars: Influence of Application Pattern and Repair Mortar Type”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (September2025).
JAMA Çalışkan Ö, Şenol AF. Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type. NOHU J. Eng. Sci. 2025;14.
MLA Çalışkan, Özlem and Ahmet Ferdi Şenol. “Flexural Performance of Concrete Beams Strengthened With Textile Reinforced Mortars: Influence of Application Pattern and Repair Mortar Type”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Çalışkan Ö, Şenol AF. Flexural Performance of concrete beams strengthened with textile reinforced mortars: Influence of application pattern and repair mortar type. NOHU J. Eng. Sci. 2025;14(4).

download