Research Article
BibTex RIS Cite

Ağır ve hafif kaynak işlemlerinin kare kesitli boş profillerin burkulma davranışı üzerindeki etkilerinin incelenmesi: Parametrik bir çalışma

Year 2025, Volume: 14 Issue: 4

Abstract

Bu parametrik çalışma, eksenel basınç ve ana eksen eğilmesi altında, kaynaklı köşelere sahip kare kesitli boş profillerin (SHS) yerel elastik burkulma davranışı üzerindeki hafif ve ağır kaynak işleminden kaynaklanan artık gerilmelerin etkisini incelemektedir. Sabit bir yükseklik-et kalınlığı oranı (40) ile çeşitli SHS boyutlarının analizi yoluyla, artık gerilme seviyelerinin yük taşıma kapasitesi üzerindeki etkileri hakkında önemli bulgular sunulmaktadır. Bulgular, ağır kaynak işlemiyle oluşan artık gerilmelerin kritik burkulma yüklerini her iki yükleme durumunda da belirgin bir şekilde azalttığını ortaya koymaktadır. Özellikle, eksenel basınç altında ağır kaynak, yaklaşık %15.3 oranında çatallanma yüklerinde önemli bir azalmaya yol açarken, hafif kaynak ise yaklaşık %7.5 oranında bir azalma sağlamıştır. Ana eksen eğilmesi durumunda da benzer şekilde önemli etkiler gözlemlenmiş olup, çatallanma momentleri ağır kaynak için yaklaşık %12.78, hafif kaynak için ise %6.16 oranında azalmıştır. Bulgular, özellikle ağır kaynaktan kaynaklanan artık gerilmenin eksenel basınç üzerindeki önemli etkisini vurgulamakta ve SHS'lerin bu yükleme koşuluna, ana eksen eğilmesine kıyasla daha hassas olduğunu göstermektedir. Bu çalışma, yapısal güvenilirliği sağlamak için tasarım uygulamalarında kaynak türünün dikkatlice değerlendirilmesi gerektiğini vurgulamaktadır.

References

  • P.W. Key and G.J. Hancock, A theoretical investigation of the column behaviour of cold-formed square hollow sections, Thin-Walled Structures. 16, 31–64, 1993. https://doi.org/10.1016/0263-8231(93)90040-H.
  • J. Shen and M.A. Wadee, Local–global mode interaction in thin-walled inelastic rectangular hollow section struts part 2: Assessment of existing design guidance and new recommendations, Thin-Walled Structures. 145, 106184, 2019. https://doi.org/10.1016/j.tws.2019.106184.
  • J. Shen and M.A. Wadee, Local–global mode interaction in thin-walled inelastic rectangular hollow section struts part 1: Nonlinear finite element analysis, Thin-Walled Structures. 145, 106183, 2019. https://doi.org/10.1016/j.tws.2019.106183.
  • R.G. Zhao, R.F. Huang, H.A. Khoo, and J.J.R. Cheng, Experimental study on slotted rectangular and square hollow structural section (HSS) tension connections, Canadian Journal of Civil Engineering. 35, 1318–1330, 2007. https://doi.org/10.1139/L08-069.
  • T.G. Singh and T.-M. Chan, Effect of access openings on the buckling performance of square hollow section module stub columns, Journal of Constructional Steel Research. 177, 106438, 2021. https://doi.org/10.1016/j.jcsr.2020.106438.
  • J. Wardenier, J.A. Packer, X.-L. Zhao, and G.J. Van der Vegte, Hollow sections in structural applications, Bouwen met staal Rotterdam,, The Netherlands, 2002.
  • M.A. Dundar and M. Nuraliyev, Parametric study on the assessment of the local buckling behavior of perforated square hollow sections with non-uniform wall thickness under axial compression TT  - Düzgün olmayan duvar kalınlığına sahip delikli kare içi boş profillerin eksenel basınç alt, Journal of Innovative Engineering and Natural Science. 4, 326–353, 2024. https://doi.org/10.61112/jiens.1397391.
  • B. Kövesdi and B. Somodi, Buckling resistance of HSS box section columns part I: Stochastic numerical study, Journal of Constructional Steel Research. 140, 1–10, 2018. https://doi.org/10.1016/j.jcsr.2017.10.016.
  • I. Quillupangui, B. Somodi, and B. Kövesdi, Overview of FEM-Based Resistance Models for Local Buckling of Welded Steel Box Section Columns, Applied Sciences. 14, 2024. https://doi.org/10.3390/app14052029.
  • J. Wardenier, D. Dutta, and N. Yeomans, Design guide for structural hollow sections in mechanical applications, Verlag TÜV Rheinland, 1995.
  • J. Wardenier, Hollow Sections in Structural Applications. CIDECT, Netherlands, 2000.
  • M. Nuraliyev, M.A. Dundar, and D.E. Sahin, Determination of optimal dimensions of polymer-based rectangular hollow sections based on both adequate-strength and local buckling criteria: Analytical and numerical studies, Mechanics Based Design of Structures and Machines. 1–31, 2022. https://doi.org/10.1080/15397734.2022.2139720.
  • H.X. Yuan, Y.Q. Wang, L. Gardner, and Y.J. Shi, Local–overall interactive buckling of welded stainless steel box section compression members, Engineering Structures. 67, 62–76, 2014. https://doi.org/10.1016/j.engstruct.2014.02.012.
  • L. Gardner, A. Fieber, and L. Macorini, Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections, Structures. 17, 2–20, 2019. https://doi.org/10.1016/j.istruc.2019.01.012.
  • L. Vieira, R. Gonçalves, and D. Camotim, On the local buckling of RHS members under axial force and biaxial bending, Thin-Walled Structures. 129, 10–19, 2018. https://doi.org/10.1016/j.tws.2018.03.022.
  • A. Saoula, S.A. Meftah, F. Mohri, and E.M. Daya, Lateral buckling of box beam elements under combined axial and bending loads, Journal of Constructional Steel Research. 116, 141–155, 2016. https://doi.org/10.1016/j.jcsr.2015.09.009.
  • M. Nuraliyev, M.A. Dundar, and H.K. Akyildiz, A novel analytical method for local buckling check of box sections with unequal wall thicknesses subjected to bending, Mechanics of Advanced Materials and Structures. 1–24, n.d. https://doi.org/10.1080/15376494.2024.2369262.
  • O. Zhao, B. Rossi, L. Gardner, and B. Young, Behaviour of structural stainless steel cross-sections under combined loading – Part II: Numerical modelling and design approach, Engineering Structures. 89, 247–259, 2015. https://doi.org/10.1016/j.engstruct.2014.11.016.
  • C.D. Moen and B.W. Schafer, Elastic buckling of cold-formed steel columns and beams with holes, Engineering Structures. 31, 2812–2824, 2009. https://doi.org/10.1016/j.engstruct.2009.07.007.
  • F.I. NIORDSON, ed., CHAPTER 17 - Buckling of Plates and Shells, in: North-Holland Series in Applied Mathematics and Mechanics, North-Holland, 1985: pp. 383–398. https://doi.org/10.1016/B978-0-444-87640-9.50023-X.
  • L. Gardner and D.A. Nethercot, Experiments on stainless steel hollow sections—Part 2: Member behaviour of columns and beams, Journal of Constructional Steel Research. 60, 1319–1332, 2004. https://doi.org/10.1016/j.jcsr.2003.11.007.
  • H. Degée, A. Detzel, and U. Kuhlmann, Interaction of global and local buckling in welded RHS compression members, Journal of Constructional Steel Research. 64, 755–765, 2008. https://doi.org/10.1016/j.jcsr.2008.01.032.
  • M. Theofanous and L. Gardner, Testing and numerical modelling of lean duplex stainless steel hollow section columns, Engineering Structures. 31, 3047–3058, 2009. https://doi.org/10.1016/j.engstruct.2009.08.004.
  • M. Theofanous, T.M. Chan, and L. Gardner, Structural response of stainless steel oval hollow section compression members, Engineering Structures. 31, 922–934, 2009. https://doi.org/10.1016/j.engstruct.2008.12.002.
  • T.G. Singh and K.D. Singh, Mechanical properties of YSt-310 cold-formed steel hollow sections at elevated temperatures, Journal of Constructional Steel Research. 158, 53–70, 2019. https://doi.org/10.1016/j.jcsr.2019.03.004.
  • F. Nishino and L. Tall, Residual stress and local buckling strength of steel columns, Proceedings of the Japan Society of Civil Engineers. 1969, 79–96, 1969. https://doi.org/10.2208/jscej1969.1969.172_79.
  • L. Gardner and B. Young, Buckling of ferritic stainless steel members under combined axial compression and bending, Journal of Constructional Steel Research. 117, 35–48, 2016. https://doi.org/10.1016/j.jcsr.2015.10.003.
  • J. Chen and T.-M. Chan, Material properties and residual stresses of cold-formed high-strength-steel circular hollow sections, Journal of Constructional Steel Research. 170, 106099, 2020. https://doi.org/10.1016/j.jcsr.2020.106099.
  • C. Junbo, C. Tak-Ming, and V.A. Ho, Stub Column Behavior of Cold-Formed High-Strength Steel Circular Hollow Sections under Compression, Journal of Structural Engineering. 146, 04020277, 2020. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002828.
  • M. Jia-Lin, C. Tak-Ming, and Y. Ben, Experimental Investigation on Stub-Column Behavior of Cold-Formed High-Strength Steel Tubular Sections, Journal of Structural Engineering. 142, 04015174, 2016. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001456.
  • K.J.R. Rasmussen and G.J. Hancock, Plate slenderness limits for high strength steel sections, Journal of Constructional Steel Research. 23, 73–96, 1992. https://doi.org/10.1016/0143-974X(92)90037-F.
  • J.B. Dwight and K.E. Moxham, Welded steel plates in compression, The Structural Engineer. 47, 49–66, 1969.
  • O. Ikechukwu and İ. Aniekan E., Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate, International Journal of Engineering Technologies IJET. 5, 50–58, 2019. https://dergipark.org.tr/tr/pub/ijet/issue/45763/402386.
  • F. Uzun and A. Bilge, Total Residual Stress Measurement by Using Ultrasonic Technique, Gazi University Journal of Science. 24, 135–141, 2011. https://dergipark.org.tr/en/pub/gujs/issue/ 7418/96741.
  • D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Welding Journal. 20, 220–234, 1941.
  • N.S. Boulton and H.E.L. Martin, Residual Stresses in Arc-Welded Plates, Proceedings of the Institution of Mechanical Engineers. 133, 295–347, 1936. https://doi.org/10.1243/PIME_PROC_1936_133_017_02.
  • Y. Ueda, Elastic, elastic-plastic and plastic buckling of plates with residual stresses. Ph.D. Thesis, Lehigh University, Pennsylvania, United States, 1962.
  • Y. Fujita, Built-up column strength. Ph.D. Thesis, Lehigh University, Pennsylvania, United States, 1956.
  • L. Tall, The strength of welded built-up columns. Ph.D. Thesis, Lehigh University, Pennsylvania, United States, 1961.
  • H. Kihara, Y. Matsuyama, K. Masubuchi, and Y. Ogura, Effect of Welding Sequence on Transverse Shrinkage and Residual Stresses, Journal of Zosen Kiokai. 1956, 123–134, 1956. https://doi.org/10.2534/jjasnaoe1952.1956.99_123.
  • M. Yoshiki, Y. Fujita, and T. Kawai, Influence of Residual Stresses on the Buckling of Plates, Journal of Zosen Kiokai. 1960, 187–194, 1960. https://doi.org/10.2534/jjasnaoe1952.1960.107_187.
  • Y. Fujita, Influence of Residual Stresses on the Instability Problems, Journal of Zosen Kiokai. 1960, 179–185, 1960. https://doi.org/10.2534/jjasnaoe1952.1960.107_179.
  • L. Preserve, A.W. Huber, L.S. Beedle, L.S. And Beedle, and F.E. Laboratory, Residual stress and the compressive strength of steel . Welding Journal, 33 (12), p. 589-s, (December 1954), Reprint No. 96 (54-3), 1954. http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1510.
  • B.L. S. and T. Lambert, Basic Column Strength, Journal of the Structural Division. 86, 139–173, 1960. https://doi.org/10.1061/JSDEAG.0000539.
  • F. Estuar and L. Tall, Experimental investigation of welded built-up columns. The Welding Journal, Vol. 42, p. 164, April 1963, Reprint No. 217 (63-4), 1963.
  • Y.-B. Wang, G.-Q. Li, and S.-W. Chen, The assessment of residual stresses in welded high strength steel box sections, Journal of Constructional Steel Research. 76, 93–99, 2012. https://doi.org/10.1016/j.jcsr.2012.03.025.
  • M. Khan, A. Paradowska, B. Uy, F. Mashiri, and Z. Tao, Residual stresses in high strength steel welded box sections, Journal of Constructional Steel Research. 116, 55–64, 2016. https://doi.org/10.1016/j.jcsr.2015.08.033.
  • prEN 1993‐1‐14, Eurocode 3: Design of steel structures–Part 1‐14: Design assisted by finite element analysis, 2020.
  • B. Somodi and B. Kövesdi, Residual stress measurements on welded square box sections using steel grades of S235–S960, Thin-Walled Structures. 123, 142–154, 2018. https://doi.org/10.1016/j.tws.2017.11.028.
  • M. Clarin, High strength steel: local buckling and residual stresses. Licentiate dissertation, Luleå tekniska universitet, Luleå, Sweden 2004.
  • M. Radwan and B. Kövesdi, Local plate buckling type imperfections for NSS and HSS welded box-section columns, Structures. 34, 2628–2643, 2021. https://doi.org/10.1016/j.istruc.2021.09.011.
  • O.-P. Hämäläinen, T. Halme, and T. Björk, Local Buckling of Welded Box Beams Made of Ultrahigh-Strength Steels, Journal of Structural Engineering. 144, 2018. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002049.
  • H. Ban, G. Shi, Y. Shi, and Y. Wang, Residual stress of 460MPa high strength steel welded box section: Experimental investigation and modeling, Thin-Walled Structures. 64, 73–82, 2013. https://doi.org/10.1016/j.tws.2012.12.007.
  • M. Clarin and O. Lagerqvist, - Residual stresses in square hollow sections made of high strength steel, in: Z.Y. Shen, G.Q. Li, S.L. Chan (Eds.), Fourth International Conference on Advances in Steel Structures, Elsevier Science Ltd, Oxford, 2005: pp. 1577–1582. https://doi.org/10.1016/B978-008044637-0/50235-3.
  • F. Nishino, Y. Ueda, and L. Tall, Experimental Investigation of the Buckling of Plates with Residual Stresses, in: Test Methods for Compression Members, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, n.d.: pp. 12-12–19. https://doi.org/10.1520/STP43785S.
  • K.J.R. Rasmussen and G.J. Hancock, Tests of high strength steel columns, Journal of Constructional Steel Research. 34, 27–52, 1995. https://doi.org/10.1016/0143-974X(95)97296-A.
  • M. Seif and B.W. Schafer, Local buckling of structural steel shapes, Journal of Constructional Steel Research. 66, 1232–1247, 2010. https://doi.org/10.1016/j.jcsr.2010.03.015.
  • W.D. Kroll, G.P. Fisher, and G.J. Heimerl, Charts for calculation of the critical stress for local instability of columns with I-, Z-, channel, and rectangular-tube section, National Advisory Committee for Aeronautics, 1943.
  • M.R. Haidarali and D.A. Nethercot, Finite element modelling of cold-formed steel beams under local buckling or combined local/distortional buckling, Thin-Walled Structures. 49, 1554–1562, 2011. https://doi.org/10.1016/j.tws.2011.08.003.
  • R. Siahaan, P. Keerthan, and M. Mahendran, Finite element modeling of rivet fastened rectangular hollow flange channel beams subject to local buckling, Engineering Structures. 126, 311–327, 2016. https://doi.org/10.1016/j.engstruct.2016.07.004.
  • M.N. Bin Kamarudin, J.S. Mohamed Ali, A. Aabid, and Y.E. Ibrahim, Buckling Analysis of a Thin-Walled Structure Using Finite Element Method and Design of Experiments, Aerospace. 9, 541, 2022. https://doi.org/10.3390/aerospace9100541.
  • E. Ellobody, Nonlinear analysis of cellular steel beams under combined buckling modes, Thin-Walled Structures. 52, 66–79, 2012. https://doi.org/10.1016/j.tws.2011.12.009.
  • S.-E. Kim, G. Papazafeiropoulos, V.-H. Truong, P.-C. Nguyen, Z. Kong, N.-T. Duong, V.-T. Pham, and Q.-V. Vu, Finite element simulation of normal – Strength CFDST members with shear connectors under bending loading, Engineering Structures. 238, 112011, 2021. https://doi.org/10.1016/j.engstruct.2021.112011.
  • A. Mahmoud, S. Torabian, A. Jay, A. Myers, E. Smith, and B. Schafer, Modeling protocols for elastic buckling and collapse analysis of spirally welded circular hollow thin-walled sections, 2015. https://doi.org/10.13140/2.1.4893.7763.
  • M. Hosseinpour and Y. Sharifi, Finite element modelling of castellated steel beams under lateral-distortional buckling mode, Structures. 29, 1507–1521, 2021. https://doi.org/10.1016/j.istruc.2020.12.038.
  • O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, Chapter 6 - Shape Functions, Derivatives, and Integration, in: O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu (Eds.), The Finite Element Method: Its Basis and Fundamentals (Seventh Edition), Butterworth-Heinemann, Oxford, 2013: pp. 151–209. https://doi.org/10.1016/B978-1-85617-633-0.00006-X.
  • P. Wysmulski, The analysis of buckling and post buckling in the compressed composite columns, Archives of Materials Science and Engineering. 85, 35–41, 2017. https://doi.org/10.5604/01.3001.0010.1556.
  • Y. Wu, S. Fan, L. Du, and Q. Wu, Research on distortional buckling capacity of stainless steel lipped C-section beams, Thin-Walled Structures. 169, 108453, 2021. https://doi.org/10.1016/j.tws.2021.108453.
  • E. Ellobody, Buckling analysis of high strength stainless steel stiffened and unstiffened slender hollow section columns, Journal of Constructional Steel Research. 63, 145–155, 2007. https://doi.org/10.1016/j.jcsr.2006.04.007.
  • M. Liu, L. Zhang, P. Wang, and Y. Chang, Buckling behaviors of section aluminum alloy columns under axial compression, Engineering Structures. 95, 127–137, 2015. https://doi.org/10.1016/j.engstruct.2015.03.064.
  • M. Longshithung Patton and K. Darunkumar Singh, Buckling of fixed-ended lean duplex stainless steel hollow columns of square, L-, T-, and +-shaped sections under pure axial compression—a finite element study, Thin-Walled Structures. 63, 106–116, 2013. https://doi.org/10.1016/j.tws.2012.09.003.
  • S.S. Kim, J.Y. Kim, and T.S. Kim, Finite element Analysis on Buckling Strength of Stainless Steel Circular Hollow Section Columns Under Concentric Axial Compression, International Journal of Steel Structures. 20, 1831–1848, 2020. https://doi.org/10.1007/s13296-020-00366-w.
  • P. Sarir, H. Jiang, P.G. Asteris, A. Formisano, and D.J. Armaghani, Iterative Finite Element Analysis of Concrete-Filled Steel Tube Columns Subjected to Axial Compression, Buildings. 12, 2022. https://doi.org/10.3390/buildings12122071.
  • B. Paul, K. Roy, J.B.P. Lim, Z. Fang, K. McCollum, and D. Bell, Moment-capacity of bolted side-plates for apex joint of nested tapered box beam portal frames, Journal of Building Engineering. 76, 107011, 2023. https://doi.org/10.1016/j.jobe.2023.107011.
  • N. Rathinam and B. Prabu, Static buckling analysis of thin cylindrical shell with centrally located dent under uniform lateral pressure, International Journal of Steel Structures. 13, 509–518, 2013. https://doi.org/10.1007/s13296-013-3010-5.
  • B.N. Parlett and B. Nour-Omid, Towards a black box Lanczos program, Computer Physics Communications. 53, 169–179, 1989. https://doi.org/10.1016/0010-4655(89)90158-6.

Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study

Year 2025, Volume: 14 Issue: 4

Abstract

This parametric study examines the influence of residual stresses from light and heavy welding on the local elastic buckling behavior of square hollow sections (SHSs) with welded corners, under axial compression and major axis bending. By analyzing various SHS sizes with a constant height-to-thickness ratio of 40, this investigation provides insights into how residual stress levels impact load-bearing capacity. Findings reveal a pronounced impact of heavy welding-induced residual stresses, notably diminishing the critical buckling loads across both loading conditions. Specifically, under axial compression, heavy welding led to a significant reduction in bifurcation loads by approximately 15.3%, while light welding caused a reduction of around 7.5%. In major axis bending, the effects were similarly considerable, with bifurcation moments reduced by approximately 12.78% for heavy welding and by 6.16% for light welding. The findings underscore the substantial effect of residual stress, particularly from heavy welding, on axial compression, indicating a greater sensitivity of SHSs to this loading condition relative to major axis bending. This study emphasizes the need for careful consideration of welding type in design practices to ensure structural reliability.

References

  • P.W. Key and G.J. Hancock, A theoretical investigation of the column behaviour of cold-formed square hollow sections, Thin-Walled Structures. 16, 31–64, 1993. https://doi.org/10.1016/0263-8231(93)90040-H.
  • J. Shen and M.A. Wadee, Local–global mode interaction in thin-walled inelastic rectangular hollow section struts part 2: Assessment of existing design guidance and new recommendations, Thin-Walled Structures. 145, 106184, 2019. https://doi.org/10.1016/j.tws.2019.106184.
  • J. Shen and M.A. Wadee, Local–global mode interaction in thin-walled inelastic rectangular hollow section struts part 1: Nonlinear finite element analysis, Thin-Walled Structures. 145, 106183, 2019. https://doi.org/10.1016/j.tws.2019.106183.
  • R.G. Zhao, R.F. Huang, H.A. Khoo, and J.J.R. Cheng, Experimental study on slotted rectangular and square hollow structural section (HSS) tension connections, Canadian Journal of Civil Engineering. 35, 1318–1330, 2007. https://doi.org/10.1139/L08-069.
  • T.G. Singh and T.-M. Chan, Effect of access openings on the buckling performance of square hollow section module stub columns, Journal of Constructional Steel Research. 177, 106438, 2021. https://doi.org/10.1016/j.jcsr.2020.106438.
  • J. Wardenier, J.A. Packer, X.-L. Zhao, and G.J. Van der Vegte, Hollow sections in structural applications, Bouwen met staal Rotterdam,, The Netherlands, 2002.
  • M.A. Dundar and M. Nuraliyev, Parametric study on the assessment of the local buckling behavior of perforated square hollow sections with non-uniform wall thickness under axial compression TT  - Düzgün olmayan duvar kalınlığına sahip delikli kare içi boş profillerin eksenel basınç alt, Journal of Innovative Engineering and Natural Science. 4, 326–353, 2024. https://doi.org/10.61112/jiens.1397391.
  • B. Kövesdi and B. Somodi, Buckling resistance of HSS box section columns part I: Stochastic numerical study, Journal of Constructional Steel Research. 140, 1–10, 2018. https://doi.org/10.1016/j.jcsr.2017.10.016.
  • I. Quillupangui, B. Somodi, and B. Kövesdi, Overview of FEM-Based Resistance Models for Local Buckling of Welded Steel Box Section Columns, Applied Sciences. 14, 2024. https://doi.org/10.3390/app14052029.
  • J. Wardenier, D. Dutta, and N. Yeomans, Design guide for structural hollow sections in mechanical applications, Verlag TÜV Rheinland, 1995.
  • J. Wardenier, Hollow Sections in Structural Applications. CIDECT, Netherlands, 2000.
  • M. Nuraliyev, M.A. Dundar, and D.E. Sahin, Determination of optimal dimensions of polymer-based rectangular hollow sections based on both adequate-strength and local buckling criteria: Analytical and numerical studies, Mechanics Based Design of Structures and Machines. 1–31, 2022. https://doi.org/10.1080/15397734.2022.2139720.
  • H.X. Yuan, Y.Q. Wang, L. Gardner, and Y.J. Shi, Local–overall interactive buckling of welded stainless steel box section compression members, Engineering Structures. 67, 62–76, 2014. https://doi.org/10.1016/j.engstruct.2014.02.012.
  • L. Gardner, A. Fieber, and L. Macorini, Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections, Structures. 17, 2–20, 2019. https://doi.org/10.1016/j.istruc.2019.01.012.
  • L. Vieira, R. Gonçalves, and D. Camotim, On the local buckling of RHS members under axial force and biaxial bending, Thin-Walled Structures. 129, 10–19, 2018. https://doi.org/10.1016/j.tws.2018.03.022.
  • A. Saoula, S.A. Meftah, F. Mohri, and E.M. Daya, Lateral buckling of box beam elements under combined axial and bending loads, Journal of Constructional Steel Research. 116, 141–155, 2016. https://doi.org/10.1016/j.jcsr.2015.09.009.
  • M. Nuraliyev, M.A. Dundar, and H.K. Akyildiz, A novel analytical method for local buckling check of box sections with unequal wall thicknesses subjected to bending, Mechanics of Advanced Materials and Structures. 1–24, n.d. https://doi.org/10.1080/15376494.2024.2369262.
  • O. Zhao, B. Rossi, L. Gardner, and B. Young, Behaviour of structural stainless steel cross-sections under combined loading – Part II: Numerical modelling and design approach, Engineering Structures. 89, 247–259, 2015. https://doi.org/10.1016/j.engstruct.2014.11.016.
  • C.D. Moen and B.W. Schafer, Elastic buckling of cold-formed steel columns and beams with holes, Engineering Structures. 31, 2812–2824, 2009. https://doi.org/10.1016/j.engstruct.2009.07.007.
  • F.I. NIORDSON, ed., CHAPTER 17 - Buckling of Plates and Shells, in: North-Holland Series in Applied Mathematics and Mechanics, North-Holland, 1985: pp. 383–398. https://doi.org/10.1016/B978-0-444-87640-9.50023-X.
  • L. Gardner and D.A. Nethercot, Experiments on stainless steel hollow sections—Part 2: Member behaviour of columns and beams, Journal of Constructional Steel Research. 60, 1319–1332, 2004. https://doi.org/10.1016/j.jcsr.2003.11.007.
  • H. Degée, A. Detzel, and U. Kuhlmann, Interaction of global and local buckling in welded RHS compression members, Journal of Constructional Steel Research. 64, 755–765, 2008. https://doi.org/10.1016/j.jcsr.2008.01.032.
  • M. Theofanous and L. Gardner, Testing and numerical modelling of lean duplex stainless steel hollow section columns, Engineering Structures. 31, 3047–3058, 2009. https://doi.org/10.1016/j.engstruct.2009.08.004.
  • M. Theofanous, T.M. Chan, and L. Gardner, Structural response of stainless steel oval hollow section compression members, Engineering Structures. 31, 922–934, 2009. https://doi.org/10.1016/j.engstruct.2008.12.002.
  • T.G. Singh and K.D. Singh, Mechanical properties of YSt-310 cold-formed steel hollow sections at elevated temperatures, Journal of Constructional Steel Research. 158, 53–70, 2019. https://doi.org/10.1016/j.jcsr.2019.03.004.
  • F. Nishino and L. Tall, Residual stress and local buckling strength of steel columns, Proceedings of the Japan Society of Civil Engineers. 1969, 79–96, 1969. https://doi.org/10.2208/jscej1969.1969.172_79.
  • L. Gardner and B. Young, Buckling of ferritic stainless steel members under combined axial compression and bending, Journal of Constructional Steel Research. 117, 35–48, 2016. https://doi.org/10.1016/j.jcsr.2015.10.003.
  • J. Chen and T.-M. Chan, Material properties and residual stresses of cold-formed high-strength-steel circular hollow sections, Journal of Constructional Steel Research. 170, 106099, 2020. https://doi.org/10.1016/j.jcsr.2020.106099.
  • C. Junbo, C. Tak-Ming, and V.A. Ho, Stub Column Behavior of Cold-Formed High-Strength Steel Circular Hollow Sections under Compression, Journal of Structural Engineering. 146, 04020277, 2020. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002828.
  • M. Jia-Lin, C. Tak-Ming, and Y. Ben, Experimental Investigation on Stub-Column Behavior of Cold-Formed High-Strength Steel Tubular Sections, Journal of Structural Engineering. 142, 04015174, 2016. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001456.
  • K.J.R. Rasmussen and G.J. Hancock, Plate slenderness limits for high strength steel sections, Journal of Constructional Steel Research. 23, 73–96, 1992. https://doi.org/10.1016/0143-974X(92)90037-F.
  • J.B. Dwight and K.E. Moxham, Welded steel plates in compression, The Structural Engineer. 47, 49–66, 1969.
  • O. Ikechukwu and İ. Aniekan E., Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate, International Journal of Engineering Technologies IJET. 5, 50–58, 2019. https://dergipark.org.tr/tr/pub/ijet/issue/45763/402386.
  • F. Uzun and A. Bilge, Total Residual Stress Measurement by Using Ultrasonic Technique, Gazi University Journal of Science. 24, 135–141, 2011. https://dergipark.org.tr/en/pub/gujs/issue/ 7418/96741.
  • D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Welding Journal. 20, 220–234, 1941.
  • N.S. Boulton and H.E.L. Martin, Residual Stresses in Arc-Welded Plates, Proceedings of the Institution of Mechanical Engineers. 133, 295–347, 1936. https://doi.org/10.1243/PIME_PROC_1936_133_017_02.
  • Y. Ueda, Elastic, elastic-plastic and plastic buckling of plates with residual stresses. Ph.D. Thesis, Lehigh University, Pennsylvania, United States, 1962.
  • Y. Fujita, Built-up column strength. Ph.D. Thesis, Lehigh University, Pennsylvania, United States, 1956.
  • L. Tall, The strength of welded built-up columns. Ph.D. Thesis, Lehigh University, Pennsylvania, United States, 1961.
  • H. Kihara, Y. Matsuyama, K. Masubuchi, and Y. Ogura, Effect of Welding Sequence on Transverse Shrinkage and Residual Stresses, Journal of Zosen Kiokai. 1956, 123–134, 1956. https://doi.org/10.2534/jjasnaoe1952.1956.99_123.
  • M. Yoshiki, Y. Fujita, and T. Kawai, Influence of Residual Stresses on the Buckling of Plates, Journal of Zosen Kiokai. 1960, 187–194, 1960. https://doi.org/10.2534/jjasnaoe1952.1960.107_187.
  • Y. Fujita, Influence of Residual Stresses on the Instability Problems, Journal of Zosen Kiokai. 1960, 179–185, 1960. https://doi.org/10.2534/jjasnaoe1952.1960.107_179.
  • L. Preserve, A.W. Huber, L.S. Beedle, L.S. And Beedle, and F.E. Laboratory, Residual stress and the compressive strength of steel . Welding Journal, 33 (12), p. 589-s, (December 1954), Reprint No. 96 (54-3), 1954. http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1510.
  • B.L. S. and T. Lambert, Basic Column Strength, Journal of the Structural Division. 86, 139–173, 1960. https://doi.org/10.1061/JSDEAG.0000539.
  • F. Estuar and L. Tall, Experimental investigation of welded built-up columns. The Welding Journal, Vol. 42, p. 164, April 1963, Reprint No. 217 (63-4), 1963.
  • Y.-B. Wang, G.-Q. Li, and S.-W. Chen, The assessment of residual stresses in welded high strength steel box sections, Journal of Constructional Steel Research. 76, 93–99, 2012. https://doi.org/10.1016/j.jcsr.2012.03.025.
  • M. Khan, A. Paradowska, B. Uy, F. Mashiri, and Z. Tao, Residual stresses in high strength steel welded box sections, Journal of Constructional Steel Research. 116, 55–64, 2016. https://doi.org/10.1016/j.jcsr.2015.08.033.
  • prEN 1993‐1‐14, Eurocode 3: Design of steel structures–Part 1‐14: Design assisted by finite element analysis, 2020.
  • B. Somodi and B. Kövesdi, Residual stress measurements on welded square box sections using steel grades of S235–S960, Thin-Walled Structures. 123, 142–154, 2018. https://doi.org/10.1016/j.tws.2017.11.028.
  • M. Clarin, High strength steel: local buckling and residual stresses. Licentiate dissertation, Luleå tekniska universitet, Luleå, Sweden 2004.
  • M. Radwan and B. Kövesdi, Local plate buckling type imperfections for NSS and HSS welded box-section columns, Structures. 34, 2628–2643, 2021. https://doi.org/10.1016/j.istruc.2021.09.011.
  • O.-P. Hämäläinen, T. Halme, and T. Björk, Local Buckling of Welded Box Beams Made of Ultrahigh-Strength Steels, Journal of Structural Engineering. 144, 2018. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002049.
  • H. Ban, G. Shi, Y. Shi, and Y. Wang, Residual stress of 460MPa high strength steel welded box section: Experimental investigation and modeling, Thin-Walled Structures. 64, 73–82, 2013. https://doi.org/10.1016/j.tws.2012.12.007.
  • M. Clarin and O. Lagerqvist, - Residual stresses in square hollow sections made of high strength steel, in: Z.Y. Shen, G.Q. Li, S.L. Chan (Eds.), Fourth International Conference on Advances in Steel Structures, Elsevier Science Ltd, Oxford, 2005: pp. 1577–1582. https://doi.org/10.1016/B978-008044637-0/50235-3.
  • F. Nishino, Y. Ueda, and L. Tall, Experimental Investigation of the Buckling of Plates with Residual Stresses, in: Test Methods for Compression Members, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, n.d.: pp. 12-12–19. https://doi.org/10.1520/STP43785S.
  • K.J.R. Rasmussen and G.J. Hancock, Tests of high strength steel columns, Journal of Constructional Steel Research. 34, 27–52, 1995. https://doi.org/10.1016/0143-974X(95)97296-A.
  • M. Seif and B.W. Schafer, Local buckling of structural steel shapes, Journal of Constructional Steel Research. 66, 1232–1247, 2010. https://doi.org/10.1016/j.jcsr.2010.03.015.
  • W.D. Kroll, G.P. Fisher, and G.J. Heimerl, Charts for calculation of the critical stress for local instability of columns with I-, Z-, channel, and rectangular-tube section, National Advisory Committee for Aeronautics, 1943.
  • M.R. Haidarali and D.A. Nethercot, Finite element modelling of cold-formed steel beams under local buckling or combined local/distortional buckling, Thin-Walled Structures. 49, 1554–1562, 2011. https://doi.org/10.1016/j.tws.2011.08.003.
  • R. Siahaan, P. Keerthan, and M. Mahendran, Finite element modeling of rivet fastened rectangular hollow flange channel beams subject to local buckling, Engineering Structures. 126, 311–327, 2016. https://doi.org/10.1016/j.engstruct.2016.07.004.
  • M.N. Bin Kamarudin, J.S. Mohamed Ali, A. Aabid, and Y.E. Ibrahim, Buckling Analysis of a Thin-Walled Structure Using Finite Element Method and Design of Experiments, Aerospace. 9, 541, 2022. https://doi.org/10.3390/aerospace9100541.
  • E. Ellobody, Nonlinear analysis of cellular steel beams under combined buckling modes, Thin-Walled Structures. 52, 66–79, 2012. https://doi.org/10.1016/j.tws.2011.12.009.
  • S.-E. Kim, G. Papazafeiropoulos, V.-H. Truong, P.-C. Nguyen, Z. Kong, N.-T. Duong, V.-T. Pham, and Q.-V. Vu, Finite element simulation of normal – Strength CFDST members with shear connectors under bending loading, Engineering Structures. 238, 112011, 2021. https://doi.org/10.1016/j.engstruct.2021.112011.
  • A. Mahmoud, S. Torabian, A. Jay, A. Myers, E. Smith, and B. Schafer, Modeling protocols for elastic buckling and collapse analysis of spirally welded circular hollow thin-walled sections, 2015. https://doi.org/10.13140/2.1.4893.7763.
  • M. Hosseinpour and Y. Sharifi, Finite element modelling of castellated steel beams under lateral-distortional buckling mode, Structures. 29, 1507–1521, 2021. https://doi.org/10.1016/j.istruc.2020.12.038.
  • O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, Chapter 6 - Shape Functions, Derivatives, and Integration, in: O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu (Eds.), The Finite Element Method: Its Basis and Fundamentals (Seventh Edition), Butterworth-Heinemann, Oxford, 2013: pp. 151–209. https://doi.org/10.1016/B978-1-85617-633-0.00006-X.
  • P. Wysmulski, The analysis of buckling and post buckling in the compressed composite columns, Archives of Materials Science and Engineering. 85, 35–41, 2017. https://doi.org/10.5604/01.3001.0010.1556.
  • Y. Wu, S. Fan, L. Du, and Q. Wu, Research on distortional buckling capacity of stainless steel lipped C-section beams, Thin-Walled Structures. 169, 108453, 2021. https://doi.org/10.1016/j.tws.2021.108453.
  • E. Ellobody, Buckling analysis of high strength stainless steel stiffened and unstiffened slender hollow section columns, Journal of Constructional Steel Research. 63, 145–155, 2007. https://doi.org/10.1016/j.jcsr.2006.04.007.
  • M. Liu, L. Zhang, P. Wang, and Y. Chang, Buckling behaviors of section aluminum alloy columns under axial compression, Engineering Structures. 95, 127–137, 2015. https://doi.org/10.1016/j.engstruct.2015.03.064.
  • M. Longshithung Patton and K. Darunkumar Singh, Buckling of fixed-ended lean duplex stainless steel hollow columns of square, L-, T-, and +-shaped sections under pure axial compression—a finite element study, Thin-Walled Structures. 63, 106–116, 2013. https://doi.org/10.1016/j.tws.2012.09.003.
  • S.S. Kim, J.Y. Kim, and T.S. Kim, Finite element Analysis on Buckling Strength of Stainless Steel Circular Hollow Section Columns Under Concentric Axial Compression, International Journal of Steel Structures. 20, 1831–1848, 2020. https://doi.org/10.1007/s13296-020-00366-w.
  • P. Sarir, H. Jiang, P.G. Asteris, A. Formisano, and D.J. Armaghani, Iterative Finite Element Analysis of Concrete-Filled Steel Tube Columns Subjected to Axial Compression, Buildings. 12, 2022. https://doi.org/10.3390/buildings12122071.
  • B. Paul, K. Roy, J.B.P. Lim, Z. Fang, K. McCollum, and D. Bell, Moment-capacity of bolted side-plates for apex joint of nested tapered box beam portal frames, Journal of Building Engineering. 76, 107011, 2023. https://doi.org/10.1016/j.jobe.2023.107011.
  • N. Rathinam and B. Prabu, Static buckling analysis of thin cylindrical shell with centrally located dent under uniform lateral pressure, International Journal of Steel Structures. 13, 509–518, 2013. https://doi.org/10.1007/s13296-013-3010-5.
  • B.N. Parlett and B. Nour-Omid, Towards a black box Lanczos program, Computer Physics Communications. 53, 169–179, 1989. https://doi.org/10.1016/0010-4655(89)90158-6.
There are 76 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Modelling and Mechanical Characterisation
Journal Section Articles
Authors

Osman Özenç 0000-0003-3455-9411

Mehmet Akif Dundar 0000-0001-5463-6774

Early Pub Date October 7, 2025
Publication Date October 12, 2025
Submission Date July 29, 2025
Acceptance Date October 2, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Özenç, O., & Dundar, M. A. (2025). Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Özenç O, Dundar MA. Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study. NOHU J. Eng. Sci. October 2025;14(4).
Chicago Özenç, Osman, and Mehmet Akif Dundar. “Investigation of the Effects of Heavy and Light Welding on Buckling Behavior of Square Hollow Sections: Parametric Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025).
EndNote Özenç O, Dundar MA (October 1, 2025) Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE O. Özenç and M. A. Dundar, “Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Özenç, Osman - Dundar, Mehmet Akif. “Investigation of the Effects of Heavy and Light Welding on Buckling Behavior of Square Hollow Sections: Parametric Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025).
JAMA Özenç O, Dundar MA. Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study. NOHU J. Eng. Sci. 2025;14.
MLA Özenç, Osman and Mehmet Akif Dundar. “Investigation of the Effects of Heavy and Light Welding on Buckling Behavior of Square Hollow Sections: Parametric Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Özenç O, Dundar MA. Investigation of the effects of heavy and light welding on buckling behavior of square hollow sections: Parametric study. NOHU J. Eng. Sci. 2025;14(4).

download