Research Article
BibTex RIS Cite

Kısmi kenar yüklerine maruz kalan eliptik boşluklu dikdörtgen plakların burkulmasında yönlenme açısının etkisi

Year 2025, Volume: 14 Issue: 4

Abstract

Bu çalışmada, farklı boyutlardaki eliptik boşluklara sahip dikdörtgen levhalarda, kısmi kenar yüklemelerinin ve eliptik boşluğun yönlenme açısının değiştirilmesinin boyutsuz burkulma katsayıları üzerindeki etkisi sonlu elemanlar yöntemi ile incelenmiştir. Modellemede, kısmi yükleme %0’dan %100’e kadar %10’luk artışlarla uygulanmıştır. Yönlenme açısı 0°’den 90°’ye kadar 15°’lik adımlarla değiştirilmiş, farklı en/boy oranları (a/b = 1 ve 2), normalize edilmiş eliptik boşluğun kısa çapı (e/b = 0.1 ve 0.2) ve normalize edilmiş uzun çapı (d/b = 0.2, 0.3, 0.4 ve 0.5) seçilmiştir. Elde edilen sonuçlardan, farklı kısmi yüklere maruz bırakılan büyük eliptik boşluklu dikdörtgen levhaların boyutsuz burkulma katsayısının, yönlenme açısındaki değişime karşı hassasiyetinin, küçük eliptik boşluklu levhalara göre daha yüksek olduğu belirlenmiştir.

References

  • A. B. Sabir and F. Y. Chow, Elastic buckling of flat panels containing circular and square holes, International Conference on Instability and Plastic Collapse of Steel Structures, Granada Publishing, pp. 311–321, London, 1983.
  • C. J. Brown and A. L. Yettram, The elastic stability of square perforated plates under combinations of bending, shear and direct load, Thin-Walled Structures. 4, 239–246, 1986. https://doi.org/10.1016/0263-8231(86)90005-4.
  • A. L. Yettram and C. J. Brown, Improving the elastic stability of square perforated plates, Journal of Constructional Steel Research. 7, 371–383, 1987. https://doi.org/10.1016/0143-974X(87)90014-9.
  • C. J. Brown, Elastic buckling of perforated plates subjected to concentrated loads, Computers and Structures. 36, 1103–1109, 1990. https://doi.org/ 10.1016/0045-7949(90)90218-Q.
  • T. M. Shakerley and C. J. Brown, Elastic buckling of plates with eccentrically positioned rectangular perforations, International Journal of Mechanical Sciences. 38, 825–838, 1996. https://doi.org/10.1016/0020-7403(95)00107-7.
  • N. E. Shanmugam, V. Thevendran and Y. H. Tan, Design formula for axially compressed perforated plates, Thin-Walled Structures. 34,1-20, 1999. https://doi.org/10.1016/S0263-8231(98)00052-4.
  • K. M. El-Sawy and A. S. Nazmy, Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes, Thin-Walled Structures. 39, 983–998, 2001. https://doi.org/10.1016/S0263-8231(01)00040-4.
  • K. M. El-Sawy, A. S. Nazmy and M. I. Martini, Elasto-plastic buckling of perforated plates under uniaxial compression, Thin-Walled Structures. 42, 1083–1101, 2004. https://doi.org/10.1016/j.tws.2004.03.002.
  • J. K. Paik, Ultimate strength of perforated steel plates under edge shear loading, Thin-Walled Structures. 45, 301–306, 2007. https://doi.org/10.1016/ j.tws.2007.02.013.
  • J. K. Paik, Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads, Thin-Walled Structures. 46, 207–213, 2008. https://doi.org/10.1016/j.tws.2007.07.010.
  • K. Prajapat, S. Ray-Chaudhuri and A. Kumar, Effect of in-plane boundary conditions on elastic buckling behavior of solid and perforated plates, Thin-Walled Structures. 90, 171–181, 2015. https://doi.org/10.1016/j.tws.2014.12.015.
  • R. Shimpi, P. Guruprasad and K. Pakhare, A three-variable geometrically nonlinear new first-order shear deformation theory for isotropic plates: formulation and buckling analysis, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 44, 299–317, 2020. https://doi.org/10.1007/s40996-020-00384-y.
  • A. Jameei Osgouei, Y. Hosseinzadeh and H. Ahmadi, Local buckling analysis of cold-formed steel webs with rectangular openings, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 44, 67–78, 2020. https://doi.org/10.1007/s40996-020-00451-4.
  • A. Jameei Osgouei, Y. Hosseinzadeh and H. Ahmadi, Local buckling analysis of cold-formed steel webs with stiffened rectangular openings, Journal of Constructional Steel Research. 167, 105824, 2020. https://doi.org/10.1016/j.jcsr.2019.105824.
  • M. A. Komur and M. Sonmez, Elastic buckling of perforated plates subjected to linearly varying in-plane loading, Structural Engineering and Mechanics. 28, 353–356, 2008. https://doi.org/ 10.12989/sem.2008.28.3.353.
  • M. A. Komur and M. Sonmez, Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout, Mechanics Research Communications. 35, 361–371, 2008. https://doi.org/10.1016/j.mechrescom.2008.01.005.
  • P. J. Deolasi and P. K. Datta, Parametric instability characteristics of rectangular plates subjected to localized edge loading (compression or tension), Computers and Structures. 54, 73–82, 1995. https://doi.org/10.1016/0045-7949(94)E0277-9.
  • A. K. L. Srivastava, P. K. Datta and A. H. Sheikh, Buckling and vibration of stiffened plates subjected to partial edge loading, International Journal of Mechanical Sciences. 45, 73–93 2003. https://doi.org/10.1016/S0020-7403(03)00038-9.
  • E. Maiorana, C. Pellegrino and C. Modena, Linear buckling analysis of perforated plates subjected to localised symmetrical load, Engineering Structures. 30, 3151–3158, 2008. https://doi.org/10.1016/ j.engstruct.2008.04.024.
  • E. Maiorana, C. Pellegrino and C. Modena, Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment, Thin-Walled Structures. 47, 241–255, 2009. https://doi.org/10.1016/j.tws.2008.08.003.
  • E. Maiorana, C. Pellegrino and C. Modena, Non-linear analysis of perforated steel plates subjected to localised symmetrical load, Journal of Constructional Steel Research. 65, 959–964 2009. https://doi.org/10.1016/ j.jcsr.2008.03.018.
  • G. Ikhenazen, M. Saidani and A. Chelghoum, Finite element analysis of linear plates buckling under in-plane patch loading, Journal of Constructional Steel Research. 66, 1112–1117, 2010. https://doi.org/10.1016/j.jcsr.2010.03.006.
  • S. Singh, K. Kulkarni, R. Pandey and H. Singh, Buckling analysis of thin rectangular plates with cutouts subjected to partial edge compression using FEM, Journal of Engineering Design and Technology. 10, 128–142, 2012. https://doi.org/ 10.1108/17260531211211935.
  • M. A. Komur and M. Sonmez, Elastic buckling behavior of rectangular plates with holes subjected to partial edge loading, Journal of Constructional Steel Research. 112, 54–60, 2015. https://doi.org/ 10.1016/j.jcsr.2015.04.020.
  • S. A. M. Ghannadpour, A. Najafi and B. Mohammadi, On the buckling behavior of cross-ply laminated composite plates due to circular/elliptical cutouts, Composite Structures 75, 3–6, 2006. https://doi.org/10.1016/j.compstruct.2006.04.071.
  • M. A. Komur, F. Sen, A. Ataş and N. Arslan, Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM, Advances in Engineering Software. 41, 161–164, 2010. https://doi.org/10.1016/j.advengsoft.2009.09.005.
  • D. Kumar and S. B. Singh, Stability and failure of composite laminates with various shaped cutouts under combined in-plane loads, Composites Part B: Engineering. 43, 142–149, 2012. https://doi.org/10.1016/j.compositesb.2011.09.005.
  • B. Chhorn and W. Y. Jung, Evaluation of buckling resistance of basalt fiber reinforced polymer plate, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 44, 229–240, 2020. https://doi.org/10.1007/s40996-019-00344-1.
  • M. Shariati and M. M. Rokhi, Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression, Thin-Walled Structures. 46, 1251–1261, 2008. https://doi.org/10.1016/j.tws.2008.02.005.
  • P. Taraghi and H. Showkati, Investigation of the Buckling Behavior of Thin-Walled Conical Steel Shells Subjected to a Uniform External Pressure, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 43, 635–648, 2019. https://doi.org/10.1007/s40996-018-0213-1.
  • M. Kılıç and M. Çinar, Buckling Behavior of Sulfate-Corroded Thin-Walled Cylindrical Steel Shells Reinforced with CFRP, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 45, 2267–2282, 2021. https://doi.org/10.1007/s40996-020-00494-7.
  • M. A. Komur, Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression, Mechanics Research Communications. 38, 117–122, 2011.https://doi.org/10.1016/j.mechrescom.2011.01.001.

Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads

Year 2025, Volume: 14 Issue: 4

Abstract

In this study, the effect of the partial edge loadings and changing the orientation angle of the elliptical cutout on the non-dimensional buckling coefficients in rectangular plates with different elliptical cutout sizes have been investigated by the finite element method. In the modeling, the partial loading was applied by 10% increment from 0% up to 100%, the orientation angle was changed with a step of 15 from 0 up to 90, the different aspect ratios (a/b = 1 and 2), normalized elliptic cutout short diameter size (e/b = 0.1 and 0.2), and normalized elliptic cutout long diameter size (d/b = 0.2, 0.3, 0.4 and 0.5) were selected. From the results obtained, it was determined that the sensitivity of the non-dimensional buckling coefficient of rectangular plates with large elliptical cutouts subjected to different partial loads to the change in the orientation angle was higher than the plates with small elliptic cutouts.

References

  • A. B. Sabir and F. Y. Chow, Elastic buckling of flat panels containing circular and square holes, International Conference on Instability and Plastic Collapse of Steel Structures, Granada Publishing, pp. 311–321, London, 1983.
  • C. J. Brown and A. L. Yettram, The elastic stability of square perforated plates under combinations of bending, shear and direct load, Thin-Walled Structures. 4, 239–246, 1986. https://doi.org/10.1016/0263-8231(86)90005-4.
  • A. L. Yettram and C. J. Brown, Improving the elastic stability of square perforated plates, Journal of Constructional Steel Research. 7, 371–383, 1987. https://doi.org/10.1016/0143-974X(87)90014-9.
  • C. J. Brown, Elastic buckling of perforated plates subjected to concentrated loads, Computers and Structures. 36, 1103–1109, 1990. https://doi.org/ 10.1016/0045-7949(90)90218-Q.
  • T. M. Shakerley and C. J. Brown, Elastic buckling of plates with eccentrically positioned rectangular perforations, International Journal of Mechanical Sciences. 38, 825–838, 1996. https://doi.org/10.1016/0020-7403(95)00107-7.
  • N. E. Shanmugam, V. Thevendran and Y. H. Tan, Design formula for axially compressed perforated plates, Thin-Walled Structures. 34,1-20, 1999. https://doi.org/10.1016/S0263-8231(98)00052-4.
  • K. M. El-Sawy and A. S. Nazmy, Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes, Thin-Walled Structures. 39, 983–998, 2001. https://doi.org/10.1016/S0263-8231(01)00040-4.
  • K. M. El-Sawy, A. S. Nazmy and M. I. Martini, Elasto-plastic buckling of perforated plates under uniaxial compression, Thin-Walled Structures. 42, 1083–1101, 2004. https://doi.org/10.1016/j.tws.2004.03.002.
  • J. K. Paik, Ultimate strength of perforated steel plates under edge shear loading, Thin-Walled Structures. 45, 301–306, 2007. https://doi.org/10.1016/ j.tws.2007.02.013.
  • J. K. Paik, Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads, Thin-Walled Structures. 46, 207–213, 2008. https://doi.org/10.1016/j.tws.2007.07.010.
  • K. Prajapat, S. Ray-Chaudhuri and A. Kumar, Effect of in-plane boundary conditions on elastic buckling behavior of solid and perforated plates, Thin-Walled Structures. 90, 171–181, 2015. https://doi.org/10.1016/j.tws.2014.12.015.
  • R. Shimpi, P. Guruprasad and K. Pakhare, A three-variable geometrically nonlinear new first-order shear deformation theory for isotropic plates: formulation and buckling analysis, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 44, 299–317, 2020. https://doi.org/10.1007/s40996-020-00384-y.
  • A. Jameei Osgouei, Y. Hosseinzadeh and H. Ahmadi, Local buckling analysis of cold-formed steel webs with rectangular openings, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 44, 67–78, 2020. https://doi.org/10.1007/s40996-020-00451-4.
  • A. Jameei Osgouei, Y. Hosseinzadeh and H. Ahmadi, Local buckling analysis of cold-formed steel webs with stiffened rectangular openings, Journal of Constructional Steel Research. 167, 105824, 2020. https://doi.org/10.1016/j.jcsr.2019.105824.
  • M. A. Komur and M. Sonmez, Elastic buckling of perforated plates subjected to linearly varying in-plane loading, Structural Engineering and Mechanics. 28, 353–356, 2008. https://doi.org/ 10.12989/sem.2008.28.3.353.
  • M. A. Komur and M. Sonmez, Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout, Mechanics Research Communications. 35, 361–371, 2008. https://doi.org/10.1016/j.mechrescom.2008.01.005.
  • P. J. Deolasi and P. K. Datta, Parametric instability characteristics of rectangular plates subjected to localized edge loading (compression or tension), Computers and Structures. 54, 73–82, 1995. https://doi.org/10.1016/0045-7949(94)E0277-9.
  • A. K. L. Srivastava, P. K. Datta and A. H. Sheikh, Buckling and vibration of stiffened plates subjected to partial edge loading, International Journal of Mechanical Sciences. 45, 73–93 2003. https://doi.org/10.1016/S0020-7403(03)00038-9.
  • E. Maiorana, C. Pellegrino and C. Modena, Linear buckling analysis of perforated plates subjected to localised symmetrical load, Engineering Structures. 30, 3151–3158, 2008. https://doi.org/10.1016/ j.engstruct.2008.04.024.
  • E. Maiorana, C. Pellegrino and C. Modena, Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment, Thin-Walled Structures. 47, 241–255, 2009. https://doi.org/10.1016/j.tws.2008.08.003.
  • E. Maiorana, C. Pellegrino and C. Modena, Non-linear analysis of perforated steel plates subjected to localised symmetrical load, Journal of Constructional Steel Research. 65, 959–964 2009. https://doi.org/10.1016/ j.jcsr.2008.03.018.
  • G. Ikhenazen, M. Saidani and A. Chelghoum, Finite element analysis of linear plates buckling under in-plane patch loading, Journal of Constructional Steel Research. 66, 1112–1117, 2010. https://doi.org/10.1016/j.jcsr.2010.03.006.
  • S. Singh, K. Kulkarni, R. Pandey and H. Singh, Buckling analysis of thin rectangular plates with cutouts subjected to partial edge compression using FEM, Journal of Engineering Design and Technology. 10, 128–142, 2012. https://doi.org/ 10.1108/17260531211211935.
  • M. A. Komur and M. Sonmez, Elastic buckling behavior of rectangular plates with holes subjected to partial edge loading, Journal of Constructional Steel Research. 112, 54–60, 2015. https://doi.org/ 10.1016/j.jcsr.2015.04.020.
  • S. A. M. Ghannadpour, A. Najafi and B. Mohammadi, On the buckling behavior of cross-ply laminated composite plates due to circular/elliptical cutouts, Composite Structures 75, 3–6, 2006. https://doi.org/10.1016/j.compstruct.2006.04.071.
  • M. A. Komur, F. Sen, A. Ataş and N. Arslan, Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM, Advances in Engineering Software. 41, 161–164, 2010. https://doi.org/10.1016/j.advengsoft.2009.09.005.
  • D. Kumar and S. B. Singh, Stability and failure of composite laminates with various shaped cutouts under combined in-plane loads, Composites Part B: Engineering. 43, 142–149, 2012. https://doi.org/10.1016/j.compositesb.2011.09.005.
  • B. Chhorn and W. Y. Jung, Evaluation of buckling resistance of basalt fiber reinforced polymer plate, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 44, 229–240, 2020. https://doi.org/10.1007/s40996-019-00344-1.
  • M. Shariati and M. M. Rokhi, Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression, Thin-Walled Structures. 46, 1251–1261, 2008. https://doi.org/10.1016/j.tws.2008.02.005.
  • P. Taraghi and H. Showkati, Investigation of the Buckling Behavior of Thin-Walled Conical Steel Shells Subjected to a Uniform External Pressure, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 43, 635–648, 2019. https://doi.org/10.1007/s40996-018-0213-1.
  • M. Kılıç and M. Çinar, Buckling Behavior of Sulfate-Corroded Thin-Walled Cylindrical Steel Shells Reinforced with CFRP, Iranian Journal of Science and Technology - Transactions of Civil Engineering. 45, 2267–2282, 2021. https://doi.org/10.1007/s40996-020-00494-7.
  • M. A. Komur, Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression, Mechanics Research Communications. 38, 117–122, 2011.https://doi.org/10.1016/j.mechrescom.2011.01.001.
There are 32 citations in total.

Details

Primary Language English
Subjects Steel Structures , Numerical Modelization in Civil Engineering
Journal Section Articles
Authors

Mehmet Aydın Kömür 0000-0002-6423-6069

İbrahim Özgür Deneme 0000-0001-5826-7187

Early Pub Date September 22, 2025
Publication Date October 14, 2025
Submission Date July 31, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Kömür, M. A., & Deneme, İ. Ö. (2025). Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Kömür MA, Deneme İÖ. Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads. NOHU J. Eng. Sci. September 2025;14(4).
Chicago Kömür, Mehmet Aydın, and İbrahim Özgür Deneme. “Effect of Orientation Angle on Buckling of Rectangular Plates With Elliptical Cutouts Subjected to Partial Edge Loads”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (September 2025).
EndNote Kömür MA, Deneme İÖ (September 1, 2025) Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE M. A. Kömür and İ. Ö. Deneme, “Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads”, NOHU J. Eng. Sci., vol. 14, no. 4, 2025.
ISNAD Kömür, Mehmet Aydın - Deneme, İbrahim Özgür. “Effect of Orientation Angle on Buckling of Rectangular Plates With Elliptical Cutouts Subjected to Partial Edge Loads”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (September2025).
JAMA Kömür MA, Deneme İÖ. Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads. NOHU J. Eng. Sci. 2025;14.
MLA Kömür, Mehmet Aydın and İbrahim Özgür Deneme. “Effect of Orientation Angle on Buckling of Rectangular Plates With Elliptical Cutouts Subjected to Partial Edge Loads”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025.
Vancouver Kömür MA, Deneme İÖ. Effect of orientation angle on buckling of rectangular plates with elliptical cutouts subjected to partial edge loads. NOHU J. Eng. Sci. 2025;14(4).

download