Research Article
BibTex RIS Cite

Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme

Year 2025, Volume: 14 Issue: 4, 1188 - 1198, 15.10.2025

Abstract

Bu çalışmada öncelikli kirletici sınıfında bulunan 4-klorofenolün (4-KF) Fenton oksidasyonu ile arıtımı incelenmiştir. Optimizasyon deneyleri sonucunda pH 3, 350 mg/L Fe+2, 1500 mg/L H2O2 ve 25 mg/L 4-KF optimum değerler olarak belirlenmiş, %88.4 giderim verimi elde edilmiştir. Optimum şartlarda kombine sistemlerin etkisini belirlemek üzere Fenton prosesi ultrasonikasyon, UV-C ultraviyole radyasyon ile birleştirilmiş ve ayrıca klasik Fenton sisteminde oksidant dozlaması işlem başında ve ortasında olmak üzere kesikli olarak eklenmiştir. Sonuçlar ultrasonikasyon ve ultraviyole radyasyon ilavesinin sistemlerin hem 4-KF absorbans değerlerinin azaltılması hem de kimyasal oksijen ihtiyacı (KOİ) giderim verimlerini artırmada klasik Fenton prosesinden daha etkisiz kaldığını göstermiştir. Ancak klasik Fenton prosesinde uygulanan H2O2 dozlamasının kesikli yapılması ile 50 mg/L 4-KF absorbans gideriminde %8.6 artış ile %83.3, KOİ gideriminde ise %7.4 artış ile %45.2 giderim değerlerine yükselmiştir. Fitotoksikolojik deneyler sonucunda 0.08 g/L tohumlar; 0.05 g/L konsantrasyon ise bitki gelişimi için EC50 değeri olarak belirlenmiştir. Arıtılmış numunedeki fitotoksisitenin L. sativum tohumları üzerinde hafif olduğunu görülmüştür. Fenton prosesinin optimizasyonu sonrasında sisteme ultraviyole ışık (UV C), sonoliz ve oksidantın kesikli dozlanmasının ilave edilmesi ile ulaşılan sonuçlar ve 4-KF arıtımı için bu proseslerin uygulanmasından kaynaklanan fitotoksik değerlendirmelerin çalışmaya özgünlük sağladığı düşünülmektedir.

Ethical Statement

Yayımlanmak üzere sunduğumuz makalede, etik kurul onayı gerektiren bir çalışma yapılmadığını taahhüt ederiz.

References

  • S. Madannejad, A. Rashidi, S. Sadeghhassani, F. Shemirani, and E. Ghasemy, Removal of 4-chlorophenol from water using different carbon nanostructures: a comparison study, Journal of Molecular Liquids, vol. 249, pp. 877-885, 2018. https://doi.org/10.1016/j.molliq.2017.11.089.
  • A. S. Ucisik and S. Trapp, Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees, Archives of environmental contamination and toxicology, vol. 54, pp. 619-627, 2008. https://doi.org/10.1007/s00244-007-9065-6.
  • N. Tsuji, T. Hirooka, H. Nagase, K. Hirata, and K. Miyamoto, Photosynthesis-dependent removal of 2, 4-dichlorophenol by Chlorella fusca var. vacuolata, Biotechnology letters, vol. 25, pp. 241-244, 2003. https://doi.org/10.1023/A:1022333406348.
  • I. Kayan, N. A. Oz, and C. Kantar, Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: Role of sludge acclimation, Journal of Environmental Management, vol. 279, p. 111781, 2021. https://doi.org/10.1016/j.jenvman.2020.111781.
  • S. Yadav, S. Kumar, and A. Haritash, A comprehensive review of chlorophenols: fate, toxicology and its treatment, Journal of environmental management, vol. 342, p. 118254, 2023. https://doi.org/10.1016/j.jenvman.2023.118254.
  • Z. Zhou, W. Yuan, Y. Wu, H. Fu, and Z. Wang, Toxicity, degradation and metabolic pathway of 4-chlorinephenol in Chlorella vulgaris, Desalination and Water Treatment, vol. 320, p. 100729, 2024. https://doi.org/10.1016/j.dwt.2024.100729.
  • Y. Kaichao, A. Reesh and I. He Zhen, Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system, Journal of Hazardous Materials, vol. 442, pp. 130126, 2023. https://doi.org/10.1016/j.jhazmat.2022.130126.
  • W.-J. Yang, H.-B. Wu, C. Zhang, Q. Zhong, M.-J. Hu, J.-L. He, G-A. Li, Z-Y. Zhu, J-L. Zhu, H. Zhao, H-S. Zhang and F. Huang, Exposure to 2, 4-dichlorophenol, 2, 4, 6-trichlorophenol, pentachlorophenol and risk of thyroid cancer: a case-control study in China, Environmental Science and Pollution Research, vol. 28, pp. 61329-61343, 2021. https://doi.org/10.1007/s11356-021-14898-z.
  • A. Zada, M. Khan, M. A. Khan, Q. Khan, A. Habibi-Yangjeh, A. Dang, M. Maqbool, Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts, Environmental Research, vol. 195, p. 110742, 2021. https://doi.org/10.1016/j.envres.2021.110742.
  • M. Pera-Titus, V. Garcı́a-Molina, M. A. Baños, J. Giménez, and S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, vol. 47, pp. 219-256, 2004. https://doi.org/10.1016/j.apcatb.2003.09.010.
  • M. B. Rosly, N. Jusoh, N. Othman, H. A. Rahman, N. F. M. Noah, and R. N. R. Sulaiman, Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design, Chemical Engineering Research and Design, vol. 145, pp. 268-278, 2019. https://doi.org/10.1016/j.cherd.2019.03.007.
  • M. Víctor-Ortega, J. Ochando-Pulido, and A. Martínez-Ferez, Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater, Process Safety and Environmental Protection, vol. 100, pp. 242-251, 2016. https://doi.org/10.1016/j.psep.2016.01.017.
  • A. Pizarro, C. Molina, M. Munoz, Z. De Pedro, N. Menendez, and J. Rodriguez, Combining HDC and CWPO for the removal of p-chloro-m-cresol from water under ambient-like conditions, Applied Catalysis B: Environmental, vol. 216, pp. 20-29, 2017. https://doi.org/10.1016/j.apcatb.2017.05.052.
  • Y. Wang, H. Wang, L. Wang, B. Cai, and H. Chen, Removal of high-concentration 4-Chlorophenol (4-CP) in wastewater using carbon-based heterogeneous catalytic oxidation: Performance and mechanism, Journal of Cleaner Production, vol. 346, p. 131176, 2022. https://doi.org/10.1016/j.jclepro.2022.131176.
  • H. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, and A. H. Mahvi, A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry, Environmental Science and Pollution Research, vol. 24, pp. 4105-4116, 2017. https://doi.org/10.1007/s11356-016-8079-x.
  • A. Shet and S. K. Vidya, Solar light mediated photocatalytic degradation of phenol using Ag core–TiO2 shell (Ag@ TiO2) nanoparticles in batch and fluidized bed reactor, Solar Energy, vol. 127, pp. 67-78, 2016. https://doi.org/10.1016/j.solener.2015.12.049.
  • S. S. Ali, A. M. Mustafa, M. Kornaros, A. Manni, J. Sun, and M. A. Khalil, Construction of novel microbial consortia CS-5 and BC-4 valued for the degradation of catalpa sawdust and chlorophenols simultaneously with enhancing methane production, Bioresource technology, vol. 301, p. 122720, 2020. https://doi.org/10.1016/j.biortech.2019.122720.
  • V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J. A. Navío, and M. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Applied Catalysis B: Environmental, vol. 225, pp. 197-206, 2018. https://doi.org/10.1016/j.apcatb.2017.11.075.
  • I. C. da Costa Soares, D. R. Da Silva, J. H. O. do Nascimento, S. Garcia-Segura, and C. A. Martínez-Huitle, Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies, Environmental Science and Pollution Research, vol. 24, pp. 24167-24176, 2017. https://doi.org/10.1007/s11356-017-0041-z.
  • G. Boczkaj and A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review, Chemical engineering journal, vol. 320, pp. 608-633, 2017. https://doi.org/10.1016/j.cej.2017.03.084.
  • M. Gągol, A. Przyjazny, and G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation–a review, Chemical Engineering Journal, vol. 338, pp. 599-627, 2018. https://doi.org/10.1016/j.cej.2018.01.049.
  • B. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi  and A. Fujishima, Hierarchical TiO2 spherical nanostructures with tunable pore size, pore volume, and specific surface area: facile preparation and high-photocatalytic performance, Catalysis Science & Technology, vol. 2, pp. 1933-1939, 2012. https://doi.org/10.1039/C2CY00509C.
  • O. Legrini, E. Oliveros, and A. Braun, Photochemical processes for water treatment, Chemical reviews, vol. 93, pp. 671-698, 1993.
  • Z. Duan, W. Zhang, M. Lu, Z. Shao, W. Huang, J. Li, Y. Li, J. Mo, Y. Li, and C. Chen, Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol, Carbon, vol. 167, pp. 351-363, 2020. https://doi.org/10.1016/j.carbon.2020.05.106.
  • S. Hadi, E. Taheri, M. M. Amin, A. Fatehizadeh, and T. M. Aminabhavi, Advanced oxidation of 4-chlorophenol via combined pulsed light and sulfate radicals methods: Effect of co-existing anions, Journal of environmental management, vol. 291, p. 112595, 2021. https://doi.org/10.1016/j.jenvman.2021.112595.
  • A. A. Babaei, M. Golshan, and B. Kakavandi, A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@ carbon, Process Safety and Environmental Protection, vol. 149, pp. 35-47, 2021. https://doi.org/10.1016/j.psep.2020.10.028.
  • W. Xiao, A. Chen, M. Cheng, W. Xiong, Y. Liu, J. Wang,  G. Wang, G. Zhang, L. Li, H. Liu, and Q. Shi, Mechanism insights into metal-organic framework-derived carbon materials activating periodate for p-chlorophenol removal: The role of S and Fe co-doping, Water Research, vol. 268, p. 122735, 2025. https://doi.org/10.1016/j.watres.2024.122735.
  • C. Ferreiro, J. Sanz, N. Villota, A. de Luis, and J. I. Lombraña, Kinetic modelling for concentration and toxicity changes during the oxidation of 4-chlorophenol by UV/H2O2, Scientific Reports, vol. 11, p. 15726, 2021. https://doi.org/10.1038/s41598-021-95083-7.
  • K. Yang, I. M. Abu-Reesh, and Z. He, Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system, Journal of Hazardous Materials, vol. 442, p. 130126, 2023. https://doi.org/10.1016/j.jhazmat.2022.130126.
  • M. Lei, Q. Gao, K. Zhou, P. Gogoi, J. Liu, J. Wang, H Song, S Wang, and X Liu, Catalytic degradation and mineralization mechanism of 4-chlorophenol oxidized by phosphomolybdic acid/H2O2, Separation and Purification Technology, vol. 257, p. 117933, 2021. https://doi.org/10.1016/j.seppur.2020.117933.
  • V. Kavitha and K. Palanivelu, Degradation of 2-chlorophenol by Fenton and photo-Fenton processes—a comparative study, Journal of Environmental science and health, Part A, vol. 38, pp. 1215-1231, 2003. https://doi.org/10.1081/ESE-120021121.
  • M. Y. Ghaly, G. Härtel, R. Mayer, and R. Haseneder, Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study, waste management, vol. 21, pp. 41-47, 2001. https://doi.org/10.1016/S0956-053X(00)00070-2.
  • V. Kavitha and K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, vol. 55, pp. 1235-1243, 2004. https://doi.org/10.1016/j.chemosphere.2003.12.022.
  • P. Raja, A. Bozzi, W. Jardim, G. Mascolo, R. Renganathan, and J. Kiwi, Reductive/oxidative treatment with superior performance relative to oxidative treatment during the degradation of 4-chlorophenol, Applied Catalysis B: Environmental, vol. 59, pp. 249-257, 2005. https://doi.org/10.1016/j.apcatb.2005.02.014.
  • S. Taherian, M. H. Entezari, and N. Ghows, Sono-catalytic degradation and fast mineralization of p-chlorophenol: La0. 7Sr0. 3MnO3 as a nano-magnetic green catalyst, Ultrasonics sonochemistry, vol. 20, pp. 1419-1427, 2013. https://doi.org/10.1016/j.ultsonch.2013.03.009.
  • M. L. Satuf, R. J. Brandi, A. E. Cassano, and O. M. Alfano, Photocatalytic degradation of 4-chlorophenol: a kinetic study, Applied Catalysis B: Environmental, vol. 82, pp. 37-49, 2008. https://doi.org/10.1016/j.apcatb.2008.01.003.
  • Y. Omidi-Khaniabadi, A. Jafari, H. Nourmoradi, F. Taheri, and S. Saeedi, Adsorption of 4-chlorophenol from aqueous solution using activated carbon synthesized from aloe vera green wastes, Journal of advances in environmental health research, vol. 3, pp. 120-129, 2015. https://doi.org/10.22102/JAEHR.2015.40194.
  • A. Garcia-Mendieta, M. Solache-Rios, and M. Olguin, Comparison of phenol and 4-chlorophenol adsorption in activated carbon with different physical properties, Separation science and technology, vol. 38, pp. 2549-2564, 2003. https://doi.org/10.1081/SS-120022287.
  • B. Hameed, L. Chin, and S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, vol. 225, pp. 185-198, 2008. https://doi.org/10.1016/j.desal.2007.04.095.
  • A. P. H. Association, Standard methods for the examination of water and wastewater vol. 6: American public health association., 1926.
  • X. Yin, W. Liu, and J. Ni, Removal of coexisting Cr (VI) and 4-chlorophenol through reduction and Fenton reaction in a single system, Chemical Engineering Journal, vol. 248, pp. 89-97, 2014. https://doi.org/10.1016/j.cej.2014.03.017.
  • B. G. Kwon, D. S. Lee, N. Kang, and J. Yoon, Characteristics of p-chlorophenol oxidation by Fenton's reagent, Water Research, vol. 33, pp. 2110-2118, 1999. https://doi.org/10.1016/S0043-1354(98)00428-X.
  • M.-C. Lu, J.-N. Chen, and C.-P. Chang, Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst, Journal of Hazardous Materials, vol. 65, pp. 277-288, 1999. https://doi.org/10.1016/S0304-3894(98)00268-4.
  • S. Yıldız, İ. Şentürk, and G. T. Canbaz, Degradation of phenol and 4-chlorophenol from aqueous solution by Fenton, photo-Fenton, sono-Fenton, and sono-photo-Fenton methods, Journal of the Iranian Chemical Society, vol. 20, pp. 231-237, 2023. https://doi.org/10.1007/s13738-022-02663-z.
  • D. Cailean, C. Teodosiu, and A. Friedl, Integrated Sono-Fenton ultrafiltration process for 4-chlorophenol removal from aqueous effluents: assessment of operational parameters (Part 1), Clean technologies and environmental policy, vol. 16, pp. 1145-1160, 2014. https://doi.org/10.1007/s10098-014-0723-x.
  • R.-M. Liou, S.-H. Chen, M.-Y. Hung, C.-S. Hsu, and J.-Y. Lai, Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution, Chemosphere, vol. 59, pp. 117-125, 2005. https://doi.org/10.1016/j.chemosphere.2004.09.080.
  • A. Babuponnusami and K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, vol. 2, pp. 557-572, 2014. https://doi.org/10.1016/j.jece.2013.10.011.
  • J. Xie, C. Lei, W. Chen, Q. Xie, Q. Guo, and B. Huang, Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr (VI): efficacy, descriptor and reductive mechanisms, Journal of Hazardous Materials, vol. 403, p. 123827, 2021. https://doi.org/10.1016/j.jhazmat.2020.123827.
  • S. Acarbabacan, I. Vergili, Y. Kaya, G. Demir, and H. Barlas, Removal of color from textile wastewater containing azodyes by Fenton's reagent, Fresenius Environmental Bulletin, vol. 11, pp. 840-843, 2002.
  • T. H. Oh, H. Lee, S. J. Park, and J.-W. Park, Identifications of Optimal Conditions for Photo-Fenton Reaction in Water Treatment, Journal of Soil and Groundwater Environment, vol. 21, pp. 86-93, 2016. https://doi.org/10.7857/JSGE.2016.21.1.086.
  • S. R. Pouran, A. Bayrami, M. S. Shafeeyan, A. A. A. Raman, and W. M. A. Wan Daud, A Comparative Study on a Cationic Dye Removal through Homogeneous and Heterogeneous Fenton Oxidation Systems, Acta Chimica Slovenica, vol. 65, 2018. https://doi.org/10.17344/acsi.2017.3732.
  • M. Nurbas and S. Kutukcuoglu, Investigation of water decolorization by Fenton oxidation process in batch and continuous systems, Desalination and Water Treatment, vol. 55, pp. 3731-3736, 2015. https://doi.org/10.1080/19443994.2014.947778.
  • F. Lücking, H. Köser, M. Jank, and A. Ritter, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Research, vol. 32, pp. 2607-2614, 1998. https://doi.org/10.1016/S0043-1354(98)00016-5.
  • Y. Xu, L. Zeng, L. Li, Y.-S. Chang, and J. Gong, Enhanced oxidative activity of zero-valent iron by citric acid complexation, Chemical Engineering Journal, vol. 373, pp. 891-901, 2019. https://doi.org/10.1016/j.cej.2019.05.093.
  • Y. Segura, F. Martínez, and J. A. Melero, Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron, Applied Catalysis B: Environmental, vol. 136, pp. 64-69, 2013. https://doi.org/10.1016/j.apcatb.2013.01.036.
  • S. Minz, R. Gupta, and S. Garg, Degradation of 4-chlorophenol using homogeneous Fenton’s oxidation process: kinetic study, in Sustainable Engineering: Proceedings of EGRWSE 2018, 2019, pp. 213-223. https://doi.org/10.1007/978-981-13-6717-5_21.
  • W. S. Kuo and L. N. Wu, Fenton degradation of 4-chlorophenol contaminated water promoted by solar irradiation, Solar Energy, vol. 84, pp. 59-65, 2010. https://doi.org/10.1016/j.solener.2009.10.006.
  • M. Murcia, M. Gomez, E. Gomez, J. Gomez, and N. Christofi, comparison of different advanced oxidation processes for degrading 4-chlorophenol, World Academy of Science, Engineering and Technology, vol. 55, pp. 249-53, 2009. https://doi.org//1307-6892/5551.
  • T. Krutzler and R. Bauer, Optimization of a photo-Fenton prototype reactor, Chemosphere, vol. 38, pp. 2517-2532, 1999. https://doi.org/10.1016/S0045-6535(98)00460-3.
  • S. J. Ki, K.-J. Jeon, Y.-K. Park, S. Jeong, H. Lee, and S.-C. Jung, Improving removal of 4-chlorophenol using a TiO2 photocatalytic system with microwave and ultraviolet radiation, Catalysis Today, vol. 293, pp. 15-22, 2017. https://doi.org/10.1016/j.cattod.2016.12.023.
  • I. Pérez-Portuondo, M. Serrat-Díaz, R. M. Pérez-Silva, and A. Ábalos-Rodríguez, Phytotoxic Effects of 4-Chlorophenol and 2, 4-Dichlorophenol in the Germination of Seeds of Phaseolus vulgaris and Zea mayz, American Journal of Plant Sciences, vol. 12, pp. 614-623, 2021. https://doi.org/10.4236/ajps.2021.124041. 
  • F. Zucconi, Phytotoxins during the stabilization of organic matter, Composting of agricultural and other wastes, pp. 73-85, 1985.
  • Z. Huma, S. Naveed, A. Rashid, and A. Ullah, Effects of domestic and industrial waste water on germination and seedling growth of some plants, Current opinion in Agriculture, vol. 1, p. 24, 2012.
  • M. G. Khan, G. Daniel, M. Konjit, A. Thomas, S. Eyasu, and G. Awoke, Impact of textile waste water on seed germination and some physiological parameters in pea (Pisum sativum L.), Lentil (Lens esculentum L.) and gram (Cicer arietinum L.), Asian Journal of Plant Sciences, vol. 10, p. 269, 2011. https://doi.org/10.3923/ajps.2011.
  • Y. Bedouh and F. Bekhouche, Influence of treated wastewater irrigation on some biochemical parameters of onion (Allium cepa), 2012.  https://doi.org/10.1117/12.3042650.
  • M. Türkyılmaz, A comparative study of free chlorine activated by Fe+ 2 and UV C light catalysts in the treatment of real and simulated textile wastewater: Optimization, reactive species and phytotoxicity assessment, Journal of Water Process Engineering, vol. 49, p. 103161, 2022. https://doi.org/10.1016/j.jwpe.2022.103161.

Fenton oxidation of synthetic 4-Chlorophenol solution: Optimization, development of the Fenton process, phytotoxic assessment

Year 2025, Volume: 14 Issue: 4, 1188 - 1198, 15.10.2025

Abstract

In this study, the treatment of 4-chlorophenol, which is a priority pollutant class, was investigated by Fenton oxidation. As a result of the optimization experiments, pH 3, 350 mg/L Fe+2, 1500 mg/L H2O2 and 25 mg/L 4-chlorophenol were determined as optimum values, and 88.4% removal efficiency was obtained. In order to determine the effect of combined systems under optimum conditions, ultrasonication and UV-C ultraviolet radiation were combined with the Fenton process. In addition, in the classical Fenton system, oxidant dosing was added to the system at the beginning and in the middle of the process and the intermittent system was studied. The results showed that the addition of ultrasonication and ultraviolet radiation was less effective than the classical Fenton process in both reducing the 4-KF absorbance values and increasing the chemical oxygen demand removal efficiency of the systems. However, with the intermittent dosing of H2O2 applied in the classical Fenton process, 4-chlorophenol absorbance removal increased by 8.6% to 83.3%, and COD removal increased by 7.4% to 45.2%. As a result of phytotoxicological experiments, 0.08 g/L and 0.05 g/L concentrations were determined as EC50 values for seeds and plant development, respectively. It was observed that phytotoxicity in the purified sample was mild on L. sativum seeds. After the optimization of the Fenton process, the results obtained by adding ultraviolet light (UV C), sonolysis and intermittent dosing of oxidant to the system and the phytotoxic evaluations resulting from the application of these processes for 4-KF treatment are thought to provide originality to the study.

References

  • S. Madannejad, A. Rashidi, S. Sadeghhassani, F. Shemirani, and E. Ghasemy, Removal of 4-chlorophenol from water using different carbon nanostructures: a comparison study, Journal of Molecular Liquids, vol. 249, pp. 877-885, 2018. https://doi.org/10.1016/j.molliq.2017.11.089.
  • A. S. Ucisik and S. Trapp, Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees, Archives of environmental contamination and toxicology, vol. 54, pp. 619-627, 2008. https://doi.org/10.1007/s00244-007-9065-6.
  • N. Tsuji, T. Hirooka, H. Nagase, K. Hirata, and K. Miyamoto, Photosynthesis-dependent removal of 2, 4-dichlorophenol by Chlorella fusca var. vacuolata, Biotechnology letters, vol. 25, pp. 241-244, 2003. https://doi.org/10.1023/A:1022333406348.
  • I. Kayan, N. A. Oz, and C. Kantar, Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: Role of sludge acclimation, Journal of Environmental Management, vol. 279, p. 111781, 2021. https://doi.org/10.1016/j.jenvman.2020.111781.
  • S. Yadav, S. Kumar, and A. Haritash, A comprehensive review of chlorophenols: fate, toxicology and its treatment, Journal of environmental management, vol. 342, p. 118254, 2023. https://doi.org/10.1016/j.jenvman.2023.118254.
  • Z. Zhou, W. Yuan, Y. Wu, H. Fu, and Z. Wang, Toxicity, degradation and metabolic pathway of 4-chlorinephenol in Chlorella vulgaris, Desalination and Water Treatment, vol. 320, p. 100729, 2024. https://doi.org/10.1016/j.dwt.2024.100729.
  • Y. Kaichao, A. Reesh and I. He Zhen, Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system, Journal of Hazardous Materials, vol. 442, pp. 130126, 2023. https://doi.org/10.1016/j.jhazmat.2022.130126.
  • W.-J. Yang, H.-B. Wu, C. Zhang, Q. Zhong, M.-J. Hu, J.-L. He, G-A. Li, Z-Y. Zhu, J-L. Zhu, H. Zhao, H-S. Zhang and F. Huang, Exposure to 2, 4-dichlorophenol, 2, 4, 6-trichlorophenol, pentachlorophenol and risk of thyroid cancer: a case-control study in China, Environmental Science and Pollution Research, vol. 28, pp. 61329-61343, 2021. https://doi.org/10.1007/s11356-021-14898-z.
  • A. Zada, M. Khan, M. A. Khan, Q. Khan, A. Habibi-Yangjeh, A. Dang, M. Maqbool, Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts, Environmental Research, vol. 195, p. 110742, 2021. https://doi.org/10.1016/j.envres.2021.110742.
  • M. Pera-Titus, V. Garcı́a-Molina, M. A. Baños, J. Giménez, and S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, vol. 47, pp. 219-256, 2004. https://doi.org/10.1016/j.apcatb.2003.09.010.
  • M. B. Rosly, N. Jusoh, N. Othman, H. A. Rahman, N. F. M. Noah, and R. N. R. Sulaiman, Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design, Chemical Engineering Research and Design, vol. 145, pp. 268-278, 2019. https://doi.org/10.1016/j.cherd.2019.03.007.
  • M. Víctor-Ortega, J. Ochando-Pulido, and A. Martínez-Ferez, Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater, Process Safety and Environmental Protection, vol. 100, pp. 242-251, 2016. https://doi.org/10.1016/j.psep.2016.01.017.
  • A. Pizarro, C. Molina, M. Munoz, Z. De Pedro, N. Menendez, and J. Rodriguez, Combining HDC and CWPO for the removal of p-chloro-m-cresol from water under ambient-like conditions, Applied Catalysis B: Environmental, vol. 216, pp. 20-29, 2017. https://doi.org/10.1016/j.apcatb.2017.05.052.
  • Y. Wang, H. Wang, L. Wang, B. Cai, and H. Chen, Removal of high-concentration 4-Chlorophenol (4-CP) in wastewater using carbon-based heterogeneous catalytic oxidation: Performance and mechanism, Journal of Cleaner Production, vol. 346, p. 131176, 2022. https://doi.org/10.1016/j.jclepro.2022.131176.
  • H. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, and A. H. Mahvi, A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry, Environmental Science and Pollution Research, vol. 24, pp. 4105-4116, 2017. https://doi.org/10.1007/s11356-016-8079-x.
  • A. Shet and S. K. Vidya, Solar light mediated photocatalytic degradation of phenol using Ag core–TiO2 shell (Ag@ TiO2) nanoparticles in batch and fluidized bed reactor, Solar Energy, vol. 127, pp. 67-78, 2016. https://doi.org/10.1016/j.solener.2015.12.049.
  • S. S. Ali, A. M. Mustafa, M. Kornaros, A. Manni, J. Sun, and M. A. Khalil, Construction of novel microbial consortia CS-5 and BC-4 valued for the degradation of catalpa sawdust and chlorophenols simultaneously with enhancing methane production, Bioresource technology, vol. 301, p. 122720, 2020. https://doi.org/10.1016/j.biortech.2019.122720.
  • V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J. A. Navío, and M. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Applied Catalysis B: Environmental, vol. 225, pp. 197-206, 2018. https://doi.org/10.1016/j.apcatb.2017.11.075.
  • I. C. da Costa Soares, D. R. Da Silva, J. H. O. do Nascimento, S. Garcia-Segura, and C. A. Martínez-Huitle, Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies, Environmental Science and Pollution Research, vol. 24, pp. 24167-24176, 2017. https://doi.org/10.1007/s11356-017-0041-z.
  • G. Boczkaj and A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review, Chemical engineering journal, vol. 320, pp. 608-633, 2017. https://doi.org/10.1016/j.cej.2017.03.084.
  • M. Gągol, A. Przyjazny, and G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation–a review, Chemical Engineering Journal, vol. 338, pp. 599-627, 2018. https://doi.org/10.1016/j.cej.2018.01.049.
  • B. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi  and A. Fujishima, Hierarchical TiO2 spherical nanostructures with tunable pore size, pore volume, and specific surface area: facile preparation and high-photocatalytic performance, Catalysis Science & Technology, vol. 2, pp. 1933-1939, 2012. https://doi.org/10.1039/C2CY00509C.
  • O. Legrini, E. Oliveros, and A. Braun, Photochemical processes for water treatment, Chemical reviews, vol. 93, pp. 671-698, 1993.
  • Z. Duan, W. Zhang, M. Lu, Z. Shao, W. Huang, J. Li, Y. Li, J. Mo, Y. Li, and C. Chen, Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol, Carbon, vol. 167, pp. 351-363, 2020. https://doi.org/10.1016/j.carbon.2020.05.106.
  • S. Hadi, E. Taheri, M. M. Amin, A. Fatehizadeh, and T. M. Aminabhavi, Advanced oxidation of 4-chlorophenol via combined pulsed light and sulfate radicals methods: Effect of co-existing anions, Journal of environmental management, vol. 291, p. 112595, 2021. https://doi.org/10.1016/j.jenvman.2021.112595.
  • A. A. Babaei, M. Golshan, and B. Kakavandi, A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@ carbon, Process Safety and Environmental Protection, vol. 149, pp. 35-47, 2021. https://doi.org/10.1016/j.psep.2020.10.028.
  • W. Xiao, A. Chen, M. Cheng, W. Xiong, Y. Liu, J. Wang,  G. Wang, G. Zhang, L. Li, H. Liu, and Q. Shi, Mechanism insights into metal-organic framework-derived carbon materials activating periodate for p-chlorophenol removal: The role of S and Fe co-doping, Water Research, vol. 268, p. 122735, 2025. https://doi.org/10.1016/j.watres.2024.122735.
  • C. Ferreiro, J. Sanz, N. Villota, A. de Luis, and J. I. Lombraña, Kinetic modelling for concentration and toxicity changes during the oxidation of 4-chlorophenol by UV/H2O2, Scientific Reports, vol. 11, p. 15726, 2021. https://doi.org/10.1038/s41598-021-95083-7.
  • K. Yang, I. M. Abu-Reesh, and Z. He, Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system, Journal of Hazardous Materials, vol. 442, p. 130126, 2023. https://doi.org/10.1016/j.jhazmat.2022.130126.
  • M. Lei, Q. Gao, K. Zhou, P. Gogoi, J. Liu, J. Wang, H Song, S Wang, and X Liu, Catalytic degradation and mineralization mechanism of 4-chlorophenol oxidized by phosphomolybdic acid/H2O2, Separation and Purification Technology, vol. 257, p. 117933, 2021. https://doi.org/10.1016/j.seppur.2020.117933.
  • V. Kavitha and K. Palanivelu, Degradation of 2-chlorophenol by Fenton and photo-Fenton processes—a comparative study, Journal of Environmental science and health, Part A, vol. 38, pp. 1215-1231, 2003. https://doi.org/10.1081/ESE-120021121.
  • M. Y. Ghaly, G. Härtel, R. Mayer, and R. Haseneder, Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study, waste management, vol. 21, pp. 41-47, 2001. https://doi.org/10.1016/S0956-053X(00)00070-2.
  • V. Kavitha and K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, vol. 55, pp. 1235-1243, 2004. https://doi.org/10.1016/j.chemosphere.2003.12.022.
  • P. Raja, A. Bozzi, W. Jardim, G. Mascolo, R. Renganathan, and J. Kiwi, Reductive/oxidative treatment with superior performance relative to oxidative treatment during the degradation of 4-chlorophenol, Applied Catalysis B: Environmental, vol. 59, pp. 249-257, 2005. https://doi.org/10.1016/j.apcatb.2005.02.014.
  • S. Taherian, M. H. Entezari, and N. Ghows, Sono-catalytic degradation and fast mineralization of p-chlorophenol: La0. 7Sr0. 3MnO3 as a nano-magnetic green catalyst, Ultrasonics sonochemistry, vol. 20, pp. 1419-1427, 2013. https://doi.org/10.1016/j.ultsonch.2013.03.009.
  • M. L. Satuf, R. J. Brandi, A. E. Cassano, and O. M. Alfano, Photocatalytic degradation of 4-chlorophenol: a kinetic study, Applied Catalysis B: Environmental, vol. 82, pp. 37-49, 2008. https://doi.org/10.1016/j.apcatb.2008.01.003.
  • Y. Omidi-Khaniabadi, A. Jafari, H. Nourmoradi, F. Taheri, and S. Saeedi, Adsorption of 4-chlorophenol from aqueous solution using activated carbon synthesized from aloe vera green wastes, Journal of advances in environmental health research, vol. 3, pp. 120-129, 2015. https://doi.org/10.22102/JAEHR.2015.40194.
  • A. Garcia-Mendieta, M. Solache-Rios, and M. Olguin, Comparison of phenol and 4-chlorophenol adsorption in activated carbon with different physical properties, Separation science and technology, vol. 38, pp. 2549-2564, 2003. https://doi.org/10.1081/SS-120022287.
  • B. Hameed, L. Chin, and S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, vol. 225, pp. 185-198, 2008. https://doi.org/10.1016/j.desal.2007.04.095.
  • A. P. H. Association, Standard methods for the examination of water and wastewater vol. 6: American public health association., 1926.
  • X. Yin, W. Liu, and J. Ni, Removal of coexisting Cr (VI) and 4-chlorophenol through reduction and Fenton reaction in a single system, Chemical Engineering Journal, vol. 248, pp. 89-97, 2014. https://doi.org/10.1016/j.cej.2014.03.017.
  • B. G. Kwon, D. S. Lee, N. Kang, and J. Yoon, Characteristics of p-chlorophenol oxidation by Fenton's reagent, Water Research, vol. 33, pp. 2110-2118, 1999. https://doi.org/10.1016/S0043-1354(98)00428-X.
  • M.-C. Lu, J.-N. Chen, and C.-P. Chang, Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst, Journal of Hazardous Materials, vol. 65, pp. 277-288, 1999. https://doi.org/10.1016/S0304-3894(98)00268-4.
  • S. Yıldız, İ. Şentürk, and G. T. Canbaz, Degradation of phenol and 4-chlorophenol from aqueous solution by Fenton, photo-Fenton, sono-Fenton, and sono-photo-Fenton methods, Journal of the Iranian Chemical Society, vol. 20, pp. 231-237, 2023. https://doi.org/10.1007/s13738-022-02663-z.
  • D. Cailean, C. Teodosiu, and A. Friedl, Integrated Sono-Fenton ultrafiltration process for 4-chlorophenol removal from aqueous effluents: assessment of operational parameters (Part 1), Clean technologies and environmental policy, vol. 16, pp. 1145-1160, 2014. https://doi.org/10.1007/s10098-014-0723-x.
  • R.-M. Liou, S.-H. Chen, M.-Y. Hung, C.-S. Hsu, and J.-Y. Lai, Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution, Chemosphere, vol. 59, pp. 117-125, 2005. https://doi.org/10.1016/j.chemosphere.2004.09.080.
  • A. Babuponnusami and K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, vol. 2, pp. 557-572, 2014. https://doi.org/10.1016/j.jece.2013.10.011.
  • J. Xie, C. Lei, W. Chen, Q. Xie, Q. Guo, and B. Huang, Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr (VI): efficacy, descriptor and reductive mechanisms, Journal of Hazardous Materials, vol. 403, p. 123827, 2021. https://doi.org/10.1016/j.jhazmat.2020.123827.
  • S. Acarbabacan, I. Vergili, Y. Kaya, G. Demir, and H. Barlas, Removal of color from textile wastewater containing azodyes by Fenton's reagent, Fresenius Environmental Bulletin, vol. 11, pp. 840-843, 2002.
  • T. H. Oh, H. Lee, S. J. Park, and J.-W. Park, Identifications of Optimal Conditions for Photo-Fenton Reaction in Water Treatment, Journal of Soil and Groundwater Environment, vol. 21, pp. 86-93, 2016. https://doi.org/10.7857/JSGE.2016.21.1.086.
  • S. R. Pouran, A. Bayrami, M. S. Shafeeyan, A. A. A. Raman, and W. M. A. Wan Daud, A Comparative Study on a Cationic Dye Removal through Homogeneous and Heterogeneous Fenton Oxidation Systems, Acta Chimica Slovenica, vol. 65, 2018. https://doi.org/10.17344/acsi.2017.3732.
  • M. Nurbas and S. Kutukcuoglu, Investigation of water decolorization by Fenton oxidation process in batch and continuous systems, Desalination and Water Treatment, vol. 55, pp. 3731-3736, 2015. https://doi.org/10.1080/19443994.2014.947778.
  • F. Lücking, H. Köser, M. Jank, and A. Ritter, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Research, vol. 32, pp. 2607-2614, 1998. https://doi.org/10.1016/S0043-1354(98)00016-5.
  • Y. Xu, L. Zeng, L. Li, Y.-S. Chang, and J. Gong, Enhanced oxidative activity of zero-valent iron by citric acid complexation, Chemical Engineering Journal, vol. 373, pp. 891-901, 2019. https://doi.org/10.1016/j.cej.2019.05.093.
  • Y. Segura, F. Martínez, and J. A. Melero, Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron, Applied Catalysis B: Environmental, vol. 136, pp. 64-69, 2013. https://doi.org/10.1016/j.apcatb.2013.01.036.
  • S. Minz, R. Gupta, and S. Garg, Degradation of 4-chlorophenol using homogeneous Fenton’s oxidation process: kinetic study, in Sustainable Engineering: Proceedings of EGRWSE 2018, 2019, pp. 213-223. https://doi.org/10.1007/978-981-13-6717-5_21.
  • W. S. Kuo and L. N. Wu, Fenton degradation of 4-chlorophenol contaminated water promoted by solar irradiation, Solar Energy, vol. 84, pp. 59-65, 2010. https://doi.org/10.1016/j.solener.2009.10.006.
  • M. Murcia, M. Gomez, E. Gomez, J. Gomez, and N. Christofi, comparison of different advanced oxidation processes for degrading 4-chlorophenol, World Academy of Science, Engineering and Technology, vol. 55, pp. 249-53, 2009. https://doi.org//1307-6892/5551.
  • T. Krutzler and R. Bauer, Optimization of a photo-Fenton prototype reactor, Chemosphere, vol. 38, pp. 2517-2532, 1999. https://doi.org/10.1016/S0045-6535(98)00460-3.
  • S. J. Ki, K.-J. Jeon, Y.-K. Park, S. Jeong, H. Lee, and S.-C. Jung, Improving removal of 4-chlorophenol using a TiO2 photocatalytic system with microwave and ultraviolet radiation, Catalysis Today, vol. 293, pp. 15-22, 2017. https://doi.org/10.1016/j.cattod.2016.12.023.
  • I. Pérez-Portuondo, M. Serrat-Díaz, R. M. Pérez-Silva, and A. Ábalos-Rodríguez, Phytotoxic Effects of 4-Chlorophenol and 2, 4-Dichlorophenol in the Germination of Seeds of Phaseolus vulgaris and Zea mayz, American Journal of Plant Sciences, vol. 12, pp. 614-623, 2021. https://doi.org/10.4236/ajps.2021.124041. 
  • F. Zucconi, Phytotoxins during the stabilization of organic matter, Composting of agricultural and other wastes, pp. 73-85, 1985.
  • Z. Huma, S. Naveed, A. Rashid, and A. Ullah, Effects of domestic and industrial waste water on germination and seedling growth of some plants, Current opinion in Agriculture, vol. 1, p. 24, 2012.
  • M. G. Khan, G. Daniel, M. Konjit, A. Thomas, S. Eyasu, and G. Awoke, Impact of textile waste water on seed germination and some physiological parameters in pea (Pisum sativum L.), Lentil (Lens esculentum L.) and gram (Cicer arietinum L.), Asian Journal of Plant Sciences, vol. 10, p. 269, 2011. https://doi.org/10.3923/ajps.2011.
  • Y. Bedouh and F. Bekhouche, Influence of treated wastewater irrigation on some biochemical parameters of onion (Allium cepa), 2012.  https://doi.org/10.1117/12.3042650.
  • M. Türkyılmaz, A comparative study of free chlorine activated by Fe+ 2 and UV C light catalysts in the treatment of real and simulated textile wastewater: Optimization, reactive species and phytotoxicity assessment, Journal of Water Process Engineering, vol. 49, p. 103161, 2022. https://doi.org/10.1016/j.jwpe.2022.103161.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention, Environmental Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Türkyılmaz 0000-0001-5484-571X

Early Pub Date August 11, 2025
Publication Date October 15, 2025
Submission Date January 27, 2025
Acceptance Date June 27, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Türkyılmaz, M. (2025). Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1188-1198. https://doi.org/10.28948/ngumuh.1628051
AMA Türkyılmaz M. Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme. NOHU J. Eng. Sci. October 2025;14(4):1188-1198. doi:10.28948/ngumuh.1628051
Chicago Türkyılmaz, Mehmet. “Sentetik 4-Klorofenol çözeltisinin Fenton Oksidasyonu: Optimizasyon, Fenton Prosesinin Geliştirilmesi, Fitotoksik Değerlendirme”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1188-98. https://doi.org/10.28948/ngumuh.1628051.
EndNote Türkyılmaz M (October 1, 2025) Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1188–1198.
IEEE M. Türkyılmaz, “Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1188–1198, 2025, doi: 10.28948/ngumuh.1628051.
ISNAD Türkyılmaz, Mehmet. “Sentetik 4-Klorofenol çözeltisinin Fenton Oksidasyonu: Optimizasyon, Fenton Prosesinin Geliştirilmesi, Fitotoksik Değerlendirme”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1188-1198. https://doi.org/10.28948/ngumuh.1628051.
JAMA Türkyılmaz M. Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme. NOHU J. Eng. Sci. 2025;14:1188–1198.
MLA Türkyılmaz, Mehmet. “Sentetik 4-Klorofenol çözeltisinin Fenton Oksidasyonu: Optimizasyon, Fenton Prosesinin Geliştirilmesi, Fitotoksik Değerlendirme”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1188-9, doi:10.28948/ngumuh.1628051.
Vancouver Türkyılmaz M. Sentetik 4-Klorofenol çözeltisinin Fenton oksidasyonu: Optimizasyon, Fenton prosesinin geliştirilmesi, fitotoksik değerlendirme. NOHU J. Eng. Sci. 2025;14(4):1188-9.

download