Research Article
BibTex RIS Cite

Sosyal medyada makine öğrenmesi ve derin öğrenme tabanlı kullanıcı ilgi alanı sınıflandırması: Çok alanlı bir yaklaşım

Year 2025, Volume: 14 Issue: 4, 1428 - 1435, 15.10.2025

Abstract

Kullanıcı tarafından üretilen metin içeriklerinin analizi, siyaset, eğlence, sağlık, spor, yiyecek ve teknoloji gibi alanlarda kullanıcı tercihleri hakkında değerli bilgiler sunmaktadır. Bu çalışma, X kullanıcı profillerinin makine öğrenmesi ve derin öğrenme algoritmalarını kullanarak ilgi alanlarına göre otomatik sınıflandırmayı amaçlamaktadır. Araştırmanın temel hedefi, Naive Bayes, Lojistik Regresyon ve Destek Vektör Makineleri gibi makine öğrenmesi teknikleri ve LSTM, GRU, Bidirectional RNN, CNN ve Derin Sinir ağları gibi derin öğrenme modelleri kullanarak kullanıcıların ilgi alanlarının altı farklı kategoriye göre sınıflandırılmasını sağlamaktır. Makine öğrenmesi ve derin öğrenme modelleri, veri havuzlama yöntemi kullanılarak karşılaştırılmış ve derin öğrenme modellerinin genelleme yeteneğini artırmada daha etkili olduğu gözlemlenmiştir. Özellikle, derin öğrenme modellerinin büyük veri kümeleriyle daha iyi genelleme yapabildiği, ancak bazı kategorilerde makine öğrenmesi modellerinin de rekabetçi performans gösterdiği gözlemlenmiştir. Elde edilen sonuçlar, hedefe yönelik içerik sunumu, kişiselleştirilmiş öneri sistemleri ve sosyal medya platformlarında kullanıcı profillemesi gibi uygulama alanlarında önemli katkılar sağlama potansiyeline sahiptir.

References

  • R. Zafarani, M. A. Abbasi, and H. Liu. Social media mining: an introduction. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139088510.
  • I. Himelboim, M. A. Smith, L. Rainie, B. Shneiderman, and C. Espina. Classifying Twitter Topic-Networks Using Social Network Analysis. Social Media + Society, 3(1), 2017. https://doi.org/10.1177/20563051176915.
  • M. Bozkuş, E. Arıcı, and S. Zeybek. Fake News Detection on Social Media Data using Community Notes with Machine Learning. 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Gaziantep, Turkiye, 1-6, 2025. https://doi.org/10.1109/ISAS66241.2025.11101905.
  • S. Zeybek, E. Koç, and A. Seçer. MS-TR: A Morphologically enriched sentiment Treebank and recursive deep models for compositional semantics in Turkish. Cogent Engineering, 8(1), 1893621, 2021. https://doi.org/10.1080/23311916.2021.1893621.
  • A. S. M. Alharbi, and E. Doncker. Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61, 2019. https://doi.org/10.1016/j.cogsys.2018.10.001.
  • S. Zeybek, B. Alkın, Y. Kaya. Derin öğrenme ve makine öğrenmesi yöntemleri ile sosyal medya verilerinden suç tespiti. NOHU J. Eng. Sci., vol. 14, no. 1, 175–182, 2025. https://doi.org/10.28948/ngumuh.1551734.
  • S. Wang, X. Zhang, Y. Wang, and F. Ricci. Trustworthy recommender systems. ACM Transactions on Intelligent Systems and Technology, 15(4), 1-20, 2024. https://doi.org/10.1145/3627826.
  • M. Salemdeeb and S. Sahmoud. What to predict from Twitter Data?. 3rd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, 237-242, 2023. https://doi.org/10.1109/ICCIT58132.2023.10273883.
  • K. Khoirunurrofik, C. D. Endrina, and A. M. Zulkarnain. Exploring the public sentiment of local community on major infrastructure development: Evidence from media news and Twitter data. Journal of Human Behavior in the Social Environment, 34(3), 423-443, 2024. https://doi.org/10.1080/10911359.2023.2249962.
  • N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, and N. B. Anuar. Applications of link prediction in social networks: A review. Journal of Network and Computer Applications, 166, 102716, 2020. https://doi.org/10.1016/j.jnca.2020.102716.
  • F. Abel, Q. Gao, G. J. Houben, and K. Tao. Analyzing user modelling on Twitter for personalized news recommendations. Proceedings of the 19th ACM International Conference on User Modeling, Adaption, and Personalization, 1-12, 2011. https://doi.org/10.1007/978-3-642-22362-4_1.
  • S. S. Atali, B. Kozlucali, and S. Zeybek. Detecting Spam Comments in Product Reviews on E-Commerce Websites. 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Gaziantep, Turkiye, 1-4, 2025. https://doi.org/10.1109/ISAS66241.2025.11101848.
  • C. Cortes, V. Vapnik. Support-vector networks. Mach Learn 20, 273–297, 1995. https://doi.org/10.1023/A:1022627411411.
  • S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735.
  • J. Devlin, M. W. Chang, K. Lee, & K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of NAACL-HLT, 2019. https://doi.org/10.18653/v1/N19-1423.

User interest classification on social media using machine learning and deep learning models: A multi-domain approach

Year 2025, Volume: 14 Issue: 4, 1428 - 1435, 15.10.2025

Abstract

The analysis of user-generated textual content provides valuable insights into user preferences in various domains, including politics, entertainment, health, sports, food, and technology. This study aims to automatically classify X user profiles based on interests using machine learning and deep learning algorithms. The objective is to categorize users into six interest areas with techniques including Naive Bayes, Logistic Regression, and Support Vector Machines, as well as LSTM, GRU, Bidirectional RNN, Conv1D, and Dense networks. Machine learning and deep learning models were compared using a pooled dataset, revealing that deep learning approaches generally improved generalization ability. Results indicate that while deep learning models achieve higher performance with large datasets, machine learning algorithms also perform competitively in certain categories. The findings highlight the potential of these models to support applications such as targeted content delivery, personalized recommendation systems, and user profiling on social media platforms.

References

  • R. Zafarani, M. A. Abbasi, and H. Liu. Social media mining: an introduction. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139088510.
  • I. Himelboim, M. A. Smith, L. Rainie, B. Shneiderman, and C. Espina. Classifying Twitter Topic-Networks Using Social Network Analysis. Social Media + Society, 3(1), 2017. https://doi.org/10.1177/20563051176915.
  • M. Bozkuş, E. Arıcı, and S. Zeybek. Fake News Detection on Social Media Data using Community Notes with Machine Learning. 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Gaziantep, Turkiye, 1-6, 2025. https://doi.org/10.1109/ISAS66241.2025.11101905.
  • S. Zeybek, E. Koç, and A. Seçer. MS-TR: A Morphologically enriched sentiment Treebank and recursive deep models for compositional semantics in Turkish. Cogent Engineering, 8(1), 1893621, 2021. https://doi.org/10.1080/23311916.2021.1893621.
  • A. S. M. Alharbi, and E. Doncker. Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61, 2019. https://doi.org/10.1016/j.cogsys.2018.10.001.
  • S. Zeybek, B. Alkın, Y. Kaya. Derin öğrenme ve makine öğrenmesi yöntemleri ile sosyal medya verilerinden suç tespiti. NOHU J. Eng. Sci., vol. 14, no. 1, 175–182, 2025. https://doi.org/10.28948/ngumuh.1551734.
  • S. Wang, X. Zhang, Y. Wang, and F. Ricci. Trustworthy recommender systems. ACM Transactions on Intelligent Systems and Technology, 15(4), 1-20, 2024. https://doi.org/10.1145/3627826.
  • M. Salemdeeb and S. Sahmoud. What to predict from Twitter Data?. 3rd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, 237-242, 2023. https://doi.org/10.1109/ICCIT58132.2023.10273883.
  • K. Khoirunurrofik, C. D. Endrina, and A. M. Zulkarnain. Exploring the public sentiment of local community on major infrastructure development: Evidence from media news and Twitter data. Journal of Human Behavior in the Social Environment, 34(3), 423-443, 2024. https://doi.org/10.1080/10911359.2023.2249962.
  • N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, and N. B. Anuar. Applications of link prediction in social networks: A review. Journal of Network and Computer Applications, 166, 102716, 2020. https://doi.org/10.1016/j.jnca.2020.102716.
  • F. Abel, Q. Gao, G. J. Houben, and K. Tao. Analyzing user modelling on Twitter for personalized news recommendations. Proceedings of the 19th ACM International Conference on User Modeling, Adaption, and Personalization, 1-12, 2011. https://doi.org/10.1007/978-3-642-22362-4_1.
  • S. S. Atali, B. Kozlucali, and S. Zeybek. Detecting Spam Comments in Product Reviews on E-Commerce Websites. 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Gaziantep, Turkiye, 1-4, 2025. https://doi.org/10.1109/ISAS66241.2025.11101848.
  • C. Cortes, V. Vapnik. Support-vector networks. Mach Learn 20, 273–297, 1995. https://doi.org/10.1023/A:1022627411411.
  • S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735.
  • J. Devlin, M. W. Chang, K. Lee, & K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of NAACL-HLT, 2019. https://doi.org/10.18653/v1/N19-1423.
There are 15 citations in total.

Details

Primary Language English
Subjects Deep Learning, Natural Language Processing
Journal Section Research Articles
Authors

Sultan Zeybek 0000-0002-1298-9499

Melih Kaçaman 0009-0006-7790-5416

Early Pub Date September 29, 2025
Publication Date October 15, 2025
Submission Date March 12, 2025
Acceptance Date September 3, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Zeybek, S., & Kaçaman, M. (2025). User interest classification on social media using machine learning and deep learning models: A multi-domain approach. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1428-1435. https://doi.org/10.28948/ngumuh.1655764
AMA Zeybek S, Kaçaman M. User interest classification on social media using machine learning and deep learning models: A multi-domain approach. NOHU J. Eng. Sci. October 2025;14(4):1428-1435. doi:10.28948/ngumuh.1655764
Chicago Zeybek, Sultan, and Melih Kaçaman. “User Interest Classification on Social Media Using Machine Learning and Deep Learning Models: A Multi-Domain Approach”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1428-35. https://doi.org/10.28948/ngumuh.1655764.
EndNote Zeybek S, Kaçaman M (October 1, 2025) User interest classification on social media using machine learning and deep learning models: A multi-domain approach. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1428–1435.
IEEE S. Zeybek and M. Kaçaman, “User interest classification on social media using machine learning and deep learning models: A multi-domain approach”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1428–1435, 2025, doi: 10.28948/ngumuh.1655764.
ISNAD Zeybek, Sultan - Kaçaman, Melih. “User Interest Classification on Social Media Using Machine Learning and Deep Learning Models: A Multi-Domain Approach”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1428-1435. https://doi.org/10.28948/ngumuh.1655764.
JAMA Zeybek S, Kaçaman M. User interest classification on social media using machine learning and deep learning models: A multi-domain approach. NOHU J. Eng. Sci. 2025;14:1428–1435.
MLA Zeybek, Sultan and Melih Kaçaman. “User Interest Classification on Social Media Using Machine Learning and Deep Learning Models: A Multi-Domain Approach”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1428-35, doi:10.28948/ngumuh.1655764.
Vancouver Zeybek S, Kaçaman M. User interest classification on social media using machine learning and deep learning models: A multi-domain approach. NOHU J. Eng. Sci. 2025;14(4):1428-35.

download