Research Article
BibTex RIS Cite

IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi

Year 2025, Volume: 14 Issue: 4, 1436 - 1446, 15.10.2025

Abstract

Tarım, insanlığın temel ihtiyacı olan beslenmenin karşılanmasında ve yaşamın sürdürülebilirliğinde kritik bir rol üstlenmektedir. Artan dünya nüfusuna bağlı olarak gıda talebi de artmakta; bu durum, tarımsal üretimde verimliliğin artırılmasını zorunlu kılmaktadır. Geleneksel tarım yöntemleri bu ihtiyacı karşılamakta yetersiz kalmakta ve bu nedenle, kaynakların etkin kullanımını sağlayan akıllı tarım teknolojilerine duyulan ihtiyaç giderek artmaktadır. Bu bağlamda, Kablosuz Sensör Ağları (Wireless Sensor Networks – WSN), çevresel değişkenleri (örneğin toprak nemi, sıcaklık, nem) izleyerek bu verilerin iletilmesini ve değerlendirilmesini sağlamaktadır. Bu çalışma, WSN tabanlı bir sistem aracılığıyla topraktaki nem miktarının izlenmesi ve bu verilere göre çalışan servo motor kontrollü akıllı vana sistemi geliştirilmesini amaçlamaktadır. Sistem, bitkilerin su ihtiyacını gerçek zamanlı takip ederek yalnızca gerekli durumlarda sulama yapılmasını sağlamaktadır. Böylece su tüketimi optimize edilmekte, gereksiz sulama önlenmekte ve tarımsal verimlilik artırılmaktadır. Ayrıca, manuel iş gücü gereksinimini azaltarak çiftçiye zaman kazandırmakta ve maliyetleri düşürmektedir. Geliştirilen sistem, sürdürülebilir tarıma katkı sunarken, aynı zamanda çiftçilerin kârlılığını da artırmayı hedeflemektedir.

References

  • M. U. Farooq, M. Waseem, S. Mazhar, A. Khairi, and T. Kamal, A review on internet of things (IoT), International Journal of Computer Applications, 113 (1), 1-7, 2015.  https://doi.org/10.5120/19787-1571.
  • K. Ashton, That ‘internet of things’ thing, RFID Journal, 22 (7), 97-114, 2009.
  • D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, Internet of things: vision, applications and research challenges, Ad hoc Networks, 10 (7), 1497-1516, 2012. https://doi.org/10.1016/j.adhoc.2012. 02.016.
  • J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems, 29 (7), 1645-1660, 2013. https://doi.org/10.1016/j.future.2013.01.010.
  • A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, Internet of things for smart cities, IEEE Internet of Things Journal, 1 (1), 22-32, 2014. https://doi.org/10.1109/JIOT.2014.2306328.
  • M. Babar, F. Arif, and M. Irfan, Internet of things–based smart city environments using big data analytics: A survey, in Recent Trends and Advances in Wireless and IoT-enabled Networks: Springer, 129-138, 2019. https://doi.org/10.1007/978-3-319-99966-1_12.
  • P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky, Internet of things platform for smart farming: Experiences and lessons learnt, Sensors, 16 (11), 1884, 2016. https:// doi.org/10.3390/s16111884.
  • M. Kocakulak and I. Butun, An overview of wireless sensor networks towards internet of things, in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, pp. 1-6. Las Vegas, NV, USA, 2017. https://doi.org/10.1109 /CCWC.2017.7868374.
  • J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer Networks, 52 (12), 2292-2330, 2008. https://doi.org/10.1016/j.comnet.2008.04. 002.
  • D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, Applications of wireless sensor networks: an up-to-date survey, Applied System Innovation, 3, (1), 14, 2020. https://doi.org/10.3390/asi3010014.
  • U. G. Assembly, Food production must double by 2050 to meet demand from world's growing population, Press Release, 9, 2009, October 2009.
  • H. C. J. Godfray et al., Food security: the challenge of feeding 9 billion people, Science, 327, (5967), 812-818, 2010. https://doi.org/10.1126/science.1185383.
  • J. Doshi, T. Patel, and S. kumar Bharti, Smart Farming using IoT, a solution for optimally monitoring farming conditions, Procedia Computer Science, 160, 746-751, 2019. https://doi.org/10.1016/j.procs.2019.11.027.
  • R. G. Baldovino, I. C. Valenzuela, and E. P. Dadios, Implementation of a low-power wireless sensor network for smart farm applications, in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1-5, Baguio City, Philippines, 2018. https://doi.org/10.1109/HNICEM. 2018.8666353.
  • Z. Hu, L. Xu, L. Cao, S. Liu, Z. Luo and J. Wang, Application of non-orthogonal multiple access in wireless sensor networks for smart agriculture, IEEE Access, 7, 87582-87592, 2019. https://doi.org/10. 1109/ACCESS.2019.2925808.
  • M. H. Almarshadi and S. M. Ismail, Effects of precision irrigation on productivity and water use efficiency of alfalfa under different irrigation methods in arid climates, Journal of Applied Sciences Research, 7, (3), 299-308, 2011.
  • M. Mahbub, A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network, Internet of Things, 9, 100161, 2020. https://doi.org/10.1016/j.iot.2019.100161.
  • M. Giri and D. N. Wavhal, Automated intelligent wireless drip irrigation using linear programming, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 2, 2013.
  • E. A. Mohammed, H. M. Zaidan, and Z. G. Mohammed, Implementation of WSN based smart irrigation system, Przegląd Elektrotechniczny, 99, 2023. https://doi.org/10.15199/48.2023.06.06.
  • K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, C. Taffernaberry, R. Leone, X. Vilajosana and T. Watteyne, Using SmartMesh IP in smart agriculture and smart building applications, Computer Communications, 121, 83-90, 2018. https://doi.org/10.1016/j.comcom.2018.03.010.
  • M. V. Bunn, S. B. Mafra, R. D. Souza, and G. L. Moritz, Exploiting simultaneous multi-band operation to improve 6TISCH reliability and latency, Journal of Communication and Information Systems, 38 (1), 157-168, 2023. https://doi.org/10.14209/jcis.2023.18.
  • G. Ambika, S. Sudarshan, A. Kavitha, B. Sudhangowda, and K. Nataraj, Efficient Smart Irrigation System using Internet of Things (IoT) for Agriculture Crops, in 2025 International Conference on Electronics and Renewable Systems (ICEARS), pp. 680-685, Tuticorin, India, 2025. https://doi. org/10.1109/ICEARS64219.2025.10940786.
  • D. A. A. G. Singh, E. J. Leavline, M. Sushmitha, and E. Manjula, Smart irrigation system using wireless sensor network with Cooja and Contiki, International Journal of Automation and Smart Technology, 9 (1), 2019. https://doi.org/10.5875/ausmt.v9i1.1859.
  • N. Pinckney, Pulse-width modulation for microcontroller servo control, IEEE Potentials, 25, (1), 27-29, 2006.
  • R. Yan, H. Sun, and Y. Qian, Energy-aware sensor node design with its application in wireless sensor networks, IEEE Transactions on Instrumentation and Measurement, 62 (5), 1183-1191, 2013. https://doi.org /10.1109/TIM.2012.2231673.
  • J. B. Zhang, D. H. Zhang, M. M. Wong, and B. T.-J. Ng, Design and development of a cost-effective fault-tolerant execution and control system for discrete manufacturing, in 2003 IEEE Conference on Emerging Technologies and Factory Automation (ETFA) Proceedings, pp. 269-275, Lisbon, Portugal, 2003. https://doi.org/10.1109/ETFA.2003.1247716.
  • T. INSTRUMENTS. SimpleLink™ Multi-Band wireless MCU LaunchPad™ development kit, https://www.ti.com/tool/LAUNCHXL-CC1352R1 (Accessed 15 May 2024).
  • L. Yu, W. Gao, R. R. Shamshiri, S. Tao, Y. Ren, Y. Zhang and G. Su, Review of research progress on soil moisture sensor technology, International Journal of Agricultural and Biological Engineering, 14, (4), 32-42, 2021. https://doi.org/10.25165/j.ijabe.20211404. 5968.
  • J. Pelegrí-Sebastiá, E. García-Breijo, J. Ibanez, T. Sogorb, N. Laguarda-Miro, and J. Garrigues, Low-cost capacitive humidity sensor for application within flexible RFID labels based on microcontroller systems, IEEE Transactions on Instrumentation and Measurement, 61, (2), 545-553, 2011. https://doi.org/ 10.1109/TIM.2011.2171712.
  • M. Hardie, Review of novel and emerging proximal soil moisture sensors for use in agriculture, Sensors, 20, (23), 6934, 2020. https://doi.org/10.3390/s2023 6934.
  • P. Gonizzi and S. Duquennoy, Hands on Contiki OS and Cooja Simulator: Exercises (Part II), Technical Report, ed: Parma: University of Parma, 2013.

Soil moisture based automatic irrigation system in IoT based smart agriculture systems

Year 2025, Volume: 14 Issue: 4, 1436 - 1446, 15.10.2025

Abstract

Agriculture plays a critical role in meeting humanity's fundamental need for nutrition and ensuring the sustainability of life. The growing world population is driving food demand, necessitating increased efficiency in agricultural production. Traditional agricultural methods are insufficient to meet this need, and therefore, the need for smart agricultural technologies that ensure efficient resource use is growing. In this context, Wireless Sensor Networks (WSNs) monitor environmental variables (e.g., soil moisture, temperature, humidity), transmit, and analyze this data. This study aims to monitor soil moisture content using a WSN-based system and develop a servomotor-controlled smart valve system that operates based on this data. The system monitors plant water needs in real time, ensuring irrigation is applied only when necessary. This optimizes water consumption, prevents unnecessary irrigation, and increases agricultural productivity. It also reduces manual labor, saving farmers time and reducing costs. The developed system contributes to sustainable agriculture while also increasing farmers' profitability.

References

  • M. U. Farooq, M. Waseem, S. Mazhar, A. Khairi, and T. Kamal, A review on internet of things (IoT), International Journal of Computer Applications, 113 (1), 1-7, 2015.  https://doi.org/10.5120/19787-1571.
  • K. Ashton, That ‘internet of things’ thing, RFID Journal, 22 (7), 97-114, 2009.
  • D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, Internet of things: vision, applications and research challenges, Ad hoc Networks, 10 (7), 1497-1516, 2012. https://doi.org/10.1016/j.adhoc.2012. 02.016.
  • J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems, 29 (7), 1645-1660, 2013. https://doi.org/10.1016/j.future.2013.01.010.
  • A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, Internet of things for smart cities, IEEE Internet of Things Journal, 1 (1), 22-32, 2014. https://doi.org/10.1109/JIOT.2014.2306328.
  • M. Babar, F. Arif, and M. Irfan, Internet of things–based smart city environments using big data analytics: A survey, in Recent Trends and Advances in Wireless and IoT-enabled Networks: Springer, 129-138, 2019. https://doi.org/10.1007/978-3-319-99966-1_12.
  • P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky, Internet of things platform for smart farming: Experiences and lessons learnt, Sensors, 16 (11), 1884, 2016. https:// doi.org/10.3390/s16111884.
  • M. Kocakulak and I. Butun, An overview of wireless sensor networks towards internet of things, in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, pp. 1-6. Las Vegas, NV, USA, 2017. https://doi.org/10.1109 /CCWC.2017.7868374.
  • J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer Networks, 52 (12), 2292-2330, 2008. https://doi.org/10.1016/j.comnet.2008.04. 002.
  • D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, Applications of wireless sensor networks: an up-to-date survey, Applied System Innovation, 3, (1), 14, 2020. https://doi.org/10.3390/asi3010014.
  • U. G. Assembly, Food production must double by 2050 to meet demand from world's growing population, Press Release, 9, 2009, October 2009.
  • H. C. J. Godfray et al., Food security: the challenge of feeding 9 billion people, Science, 327, (5967), 812-818, 2010. https://doi.org/10.1126/science.1185383.
  • J. Doshi, T. Patel, and S. kumar Bharti, Smart Farming using IoT, a solution for optimally monitoring farming conditions, Procedia Computer Science, 160, 746-751, 2019. https://doi.org/10.1016/j.procs.2019.11.027.
  • R. G. Baldovino, I. C. Valenzuela, and E. P. Dadios, Implementation of a low-power wireless sensor network for smart farm applications, in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1-5, Baguio City, Philippines, 2018. https://doi.org/10.1109/HNICEM. 2018.8666353.
  • Z. Hu, L. Xu, L. Cao, S. Liu, Z. Luo and J. Wang, Application of non-orthogonal multiple access in wireless sensor networks for smart agriculture, IEEE Access, 7, 87582-87592, 2019. https://doi.org/10. 1109/ACCESS.2019.2925808.
  • M. H. Almarshadi and S. M. Ismail, Effects of precision irrigation on productivity and water use efficiency of alfalfa under different irrigation methods in arid climates, Journal of Applied Sciences Research, 7, (3), 299-308, 2011.
  • M. Mahbub, A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network, Internet of Things, 9, 100161, 2020. https://doi.org/10.1016/j.iot.2019.100161.
  • M. Giri and D. N. Wavhal, Automated intelligent wireless drip irrigation using linear programming, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 2, 2013.
  • E. A. Mohammed, H. M. Zaidan, and Z. G. Mohammed, Implementation of WSN based smart irrigation system, Przegląd Elektrotechniczny, 99, 2023. https://doi.org/10.15199/48.2023.06.06.
  • K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, C. Taffernaberry, R. Leone, X. Vilajosana and T. Watteyne, Using SmartMesh IP in smart agriculture and smart building applications, Computer Communications, 121, 83-90, 2018. https://doi.org/10.1016/j.comcom.2018.03.010.
  • M. V. Bunn, S. B. Mafra, R. D. Souza, and G. L. Moritz, Exploiting simultaneous multi-band operation to improve 6TISCH reliability and latency, Journal of Communication and Information Systems, 38 (1), 157-168, 2023. https://doi.org/10.14209/jcis.2023.18.
  • G. Ambika, S. Sudarshan, A. Kavitha, B. Sudhangowda, and K. Nataraj, Efficient Smart Irrigation System using Internet of Things (IoT) for Agriculture Crops, in 2025 International Conference on Electronics and Renewable Systems (ICEARS), pp. 680-685, Tuticorin, India, 2025. https://doi. org/10.1109/ICEARS64219.2025.10940786.
  • D. A. A. G. Singh, E. J. Leavline, M. Sushmitha, and E. Manjula, Smart irrigation system using wireless sensor network with Cooja and Contiki, International Journal of Automation and Smart Technology, 9 (1), 2019. https://doi.org/10.5875/ausmt.v9i1.1859.
  • N. Pinckney, Pulse-width modulation for microcontroller servo control, IEEE Potentials, 25, (1), 27-29, 2006.
  • R. Yan, H. Sun, and Y. Qian, Energy-aware sensor node design with its application in wireless sensor networks, IEEE Transactions on Instrumentation and Measurement, 62 (5), 1183-1191, 2013. https://doi.org /10.1109/TIM.2012.2231673.
  • J. B. Zhang, D. H. Zhang, M. M. Wong, and B. T.-J. Ng, Design and development of a cost-effective fault-tolerant execution and control system for discrete manufacturing, in 2003 IEEE Conference on Emerging Technologies and Factory Automation (ETFA) Proceedings, pp. 269-275, Lisbon, Portugal, 2003. https://doi.org/10.1109/ETFA.2003.1247716.
  • T. INSTRUMENTS. SimpleLink™ Multi-Band wireless MCU LaunchPad™ development kit, https://www.ti.com/tool/LAUNCHXL-CC1352R1 (Accessed 15 May 2024).
  • L. Yu, W. Gao, R. R. Shamshiri, S. Tao, Y. Ren, Y. Zhang and G. Su, Review of research progress on soil moisture sensor technology, International Journal of Agricultural and Biological Engineering, 14, (4), 32-42, 2021. https://doi.org/10.25165/j.ijabe.20211404. 5968.
  • J. Pelegrí-Sebastiá, E. García-Breijo, J. Ibanez, T. Sogorb, N. Laguarda-Miro, and J. Garrigues, Low-cost capacitive humidity sensor for application within flexible RFID labels based on microcontroller systems, IEEE Transactions on Instrumentation and Measurement, 61, (2), 545-553, 2011. https://doi.org/ 10.1109/TIM.2011.2171712.
  • M. Hardie, Review of novel and emerging proximal soil moisture sensors for use in agriculture, Sensors, 20, (23), 6934, 2020. https://doi.org/10.3390/s2023 6934.
  • P. Gonizzi and S. Duquennoy, Hands on Contiki OS and Cooja Simulator: Exercises (Part II), Technical Report, ed: Parma: University of Parma, 2013.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Networking and Communications, Stream and Sensor Data, Computer Software, Electronic Device and System Performance Evaluation, Testing and Simulation
Journal Section Research Articles
Authors

Doğan Yıldız 0000-0001-9670-4173

Sercan Demirci 0000-0001-6739-7653

Early Pub Date September 22, 2025
Publication Date October 15, 2025
Submission Date April 25, 2025
Acceptance Date September 3, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Yıldız, D., & Demirci, S. (2025). IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1436-1446. https://doi.org/10.28948/ngumuh.1684045
AMA Yıldız D, Demirci S. IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi. NOHU J. Eng. Sci. October 2025;14(4):1436-1446. doi:10.28948/ngumuh.1684045
Chicago Yıldız, Doğan, and Sercan Demirci. “IoT Tabanlı Akıllı Tarım Sistemlerinde Toprak Nemine Dayalı Otomatik Sulama Sistemi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1436-46. https://doi.org/10.28948/ngumuh.1684045.
EndNote Yıldız D, Demirci S (October 1, 2025) IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1436–1446.
IEEE D. Yıldız and S. Demirci, “IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1436–1446, 2025, doi: 10.28948/ngumuh.1684045.
ISNAD Yıldız, Doğan - Demirci, Sercan. “IoT Tabanlı Akıllı Tarım Sistemlerinde Toprak Nemine Dayalı Otomatik Sulama Sistemi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1436-1446. https://doi.org/10.28948/ngumuh.1684045.
JAMA Yıldız D, Demirci S. IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi. NOHU J. Eng. Sci. 2025;14:1436–1446.
MLA Yıldız, Doğan and Sercan Demirci. “IoT Tabanlı Akıllı Tarım Sistemlerinde Toprak Nemine Dayalı Otomatik Sulama Sistemi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1436-4, doi:10.28948/ngumuh.1684045.
Vancouver Yıldız D, Demirci S. IoT tabanlı akıllı tarım sistemlerinde toprak nemine dayalı otomatik sulama sistemi. NOHU J. Eng. Sci. 2025;14(4):1436-4.

download