Research Article
BibTex RIS Cite

The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas

Year 2025, Volume: 14 Issue: 4, 1211 - 1221, 15.10.2025

Abstract

Wind energy is a crucial pathway for sustainable electricity generation. Nevertheless, the performance of small-scale wind turbines-particularly in urban and rural environments- remains constrained by low and highly variable wind speeds. This study presents a novel wind concentrator system specifically developed to improve the performance of roof-mounted wind turbines by optimizing airflow characteristics. The system utilizes concave concentrator blades positioned circumferentially around the rotor to accelerate the incoming airflow and generate a controlled vortex, thereby increasing the wind velocity incident on the turbine. Experimental and theoretical analyses indicate that the concentrator increases the turbine rotational speed by approximately 39%, thereby enabling the turbine to operate at lower wind speeds that would otherwise result in stalling. Power coefficient measurements indicate an increase from 0.15 without the concentrator to 0.20 with the concentrator, representing approximately a one-third enhancement in power output at a wind speed of 9.5 m/s. Moreover, the concentrator facilitates comparable energy capture using only one-sixth of the rotor area required by a conventional wind turbine. These findings underscore the potential of the system to enhance the feasibility of small-scale wind energy, especially for decentralized and off-grid applications, thereby contributing to the development of distributed renewable energy solutions.

References

  • Z. Şen, Solar energy fundamentals and modeling techniques: Atmosphere, environment, climate change and renewable energy. Springer Science & Business Media, 2008. https://doi.org/10.1007/978-1-84800-134-3,
  • W. Tong, Fundamentals of wind energy, WIT press Southampton, UK,44 , 2010. https://doi.org/10.24 95/978-1-84564-205-1/01.
  • I. M. Held, Large-scale dynamics and global warming, Bulletin - American Meteorological Society, 74 (2), ,228–241, 1993. https://doi.org/10.1175/1520-0477(19 93)074<0228:LSDAGW>2.0.CO;2.
  • A. Chaudhuri, R. Datta, M. P. Kumar, J. P. Davim, and S. Pramanik, Energy Conversion Strategies for Wind Energy System: Electrical, Mechanical and Material Aspects, Materials, 15 (3), 1232, 2022. https://doi.org/ 10.3390/ma15031232.
  • A. İlhan, M. Bilgili, M. Sari, and B. Şahin, Economic analyses of onshore commercial large scale wind turbines installed in Turkey, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (1), 170–176,2021. https://doi.org10.28948/ngumuh.866 312.
  • G. M. Shafiullah, A. M.t. Oo, A. B. M. Shawkat Ali, and P. Wolfs, Potential challenges of integrating large-scale wind energy into the power grid-A review, Renewable and Sustainable Energy Reviews, 20, 306–321, 2013. https://doi.org 10.1016/j.rser.2012.11.057.
  • R. Belu, Wind Energy Conversion and Analysis, Encyclopedia of Energy Engineering and Technology, Second Edition, 2140–2161, 2014. https://doi.org /10.1081/e-eee2-120048430.
  • E. Pavlis, Large-Scale Wind Energy Farm Development and its Impacts on the Landscape: A Review of the Greek Case, Journal of Landscape Ecology (Czech Republic), 18, 24–61. 2025. https://doi.org /10.2478/jlecol-2025-0019.
  • N. Aravindhan, M. P. Natarajan, S. Ponnuvel, and P. K. Devan, Recent developments and issues of small-scale wind turbines in urban residential buildings- A review, Energy and Environment, 34 (4), 1142–1169, 2023. https://doi.org/10.1177/0958305X221084038.
  • J. Dowds et al., A review of large-scale wind integration studies, Renewable and Sustainable Energy Reviews, 49, 768–794, 2015. https://doi.org/10.10 16/j.rser.2015.04.134.
  • M. Ragheb, History of harnessing wind power, in Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, Elsevier, 11–20, 2023. https://doi.org/10.1016/B978-0-323-99353-1.00017-7.
  • O. Probst, O. Monroy, J. Martínez, and J. Elizondo, Small Wind Turbine Technology 5 Small Wind Turbine Technology, Wind turbines, 107–136, 2011. https://www.researchgate.net/publication/221911664. Accessed 15 March 2025
  • K. Calautit and C. Johnstone, State-of-the-art review of micro to small-scale wind energy harvesting technologies for building integration, Energy Conversion and Management: X, 20, 100457, 2023. https://doi.org/10.1016/j.ecmx.2023.100457.
  • S. H. Chang, Q. H. Lim, and K. H. Lin, Design of a wind energy capturing device for a vehicle, in Proceedings - International Conference on Intelligent Systems, Modelling and Simulation, ISMS, 2015-Septe, 435–440, 2015. https://doi.org/10.1109/IS MS.2014.80.
  • M. Heragy, T. Kono, and T. Kiwata, Investigating the effects of wind concentrator on power performance improvement of crossflow wind turbine, Energy Conversion and Management,255, 15326, 2022. https://doi.org/10.1016/j.enconman.2022.115326.
  • R. Carriveau, Fundamental and Advanced Topics in Wind Power. BoD–Books on Demand, 2012. https://doi.org/10.5772/731.
  • D. Le Gourieres, Wind power plants: theory and design. Elsevier, 1982. https://doi.org /10.1115/1.3267641.
  • L. Dodson, K. Busawon, and M. Jovanovic, Estimation of the power coefficient in a wind conversion system, in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ’05,2005, 3450–3455,2005. https://doi.org /10.1109/CDC.2005.1582696.
  • V. P. Khambalkar, D. S. Karale, and S. R. Gadge, Performance evaluation of a 2 MW wind power project, Journal of Energy in Southern Africa, 17 (4), 70–75, 2006. https://doi.org/10.17159/2413-3051/2006/v17i4 a3232.
  • B. Desalegn, D. Gebeyehu, and B. Tamirat, Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review, Heliyon, 8 (11), e11263, 2022. https://doi.o rg/j.heliyon.2022.e11263.
  • A. Betz, Introduction to the Theory of Flow Machines. Elsevier, 1966. https://doi.org/10.1016/c2013-0-05426-6.
  • Y. Keleshibieke, Wind turbine optimization, Nazarbayev University, 2019. https://nur.nu.edu.kz/h andle/123456789/3760. Accessed 16 May 2025
  • M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems, Assessment of wind energy potential using wind energy conversion system, Journal of Cleaner Production, 216, 346–360, 2019. https://doi.o rg/10.1016/j.jclepro.2019.01.128.
  • R. C. Bansal, T. S. Bhatti, and D. P. Kothari, On some of the design aspects of wind energy conversion systems, Energy Conversion and Management, 43 (16), 2175–2187, 2002. https://doi.org/10.1016/S0196-8904(01)00166-2.
  • G. Tefera, G. Bright, and S. Adali, Theoretical and computational studies on the optimal positions of NACA airfoils used in horizontal axis wind turbine blades, Journal of Energy Systems, 6 (3), 369–386, 2022. https://doi.org/10.30521/jes.1055935.
  • V. Nelson, Vertical Axis Wind Turbines, Innovative Wind Turbines,1 (40), 63–90, 2019. https://doi.org /10.1201/9781003010883-4.
  • J. Svorcan, O. Peković, A. Simonović, D. Tanović, and M. S. Hasan, Design of optimal flow concentrator for vertical-axis wind turbines using computational fluid dynamics, artificial neural networks and genetic algorithm, Advances in Mechanical Engineering, vol. 13(3), 16878140211009008, 2021. https://doi.org/ 10.1177/16878140211009009.

Rüzgâr yoğunlaştırıcı sisteminin kırsal alanlardaki çatıya monte rüzgâr türbinlerinin verimliliğine etkisi

Year 2025, Volume: 14 Issue: 4, 1211 - 1221, 15.10.2025

Abstract

Rüzgâr enerjisi, sürdürülebilir elektrik üretimi için temel bir yol olarak öne çıkmaktadır. Ancak, özellikle kentsel ve kırsal alanlarda kullanılan küçük ölçekli rüzgâr türbinlerinin performansı, genellikle düşük ve yüksek oranda değişken rüzgâr hızları nedeniyle sınırlı kalmaktadır. Bu çalışma, çatıya monte edilen rüzgâr türbinlerinin performansını hava akışı karakteristiklerini optimize ederek artırmak amacıyla özel olarak geliştirilmiş yenilikçi bir rüzgâr yoğunlaştırıcı sistemini sunmaktadır. Sistem, rotorun çevresine dairesel olarak yerleştirilen içbükey yoğunlaştırıcı kanatları kullanarak gelen hava akışını hızlandırmakta ve kontrollü bir girdap oluşturarak türbine ulaşan rüzgâr hızını artırmaktadır. Deneysel ve teorik analizler, yoğunlaştırıcı sistemin türbin dönme hızını yaklaşık %39 oranında artırdığını ve böylece, aksi halde durmasına neden olacak düşük rüzgâr hızlarında da türbinin çalışmasını mümkün kıldığını göstermektedir. Güç katsayısı ölçümleri, yoğunlaştırıcı olmadan 0.15 olan değerin yoğunlaştırıcı ile 0.20'ye yükseldiğini ve bu durumun 9.5 m/s rüzgâr hızında yaklaşık üçte bir oranında güç artışına karşılık geldiğini göstermektedir. Ayrıca, yoğunlaştırıcı sistem, konvansiyonel bir rüzgâr türbininin ihtiyaç duyduğu rotor alanının yalnızca altıda biriyle benzer düzeyde enerji üretimini mümkün kılmaktadır. Bu bulgular, sistemin özellikle merkezi olmayan ve şebekeden bağımsız uygulamalarda küçük ölçekli rüzgâr enerjisinin uygulanabilirliğini artırma potansiyelini vurgulamakta ve dağıtık yenilenebilir enerji çözümlerinin geliştirimine katkı sağlamaktadır.

References

  • Z. Şen, Solar energy fundamentals and modeling techniques: Atmosphere, environment, climate change and renewable energy. Springer Science & Business Media, 2008. https://doi.org/10.1007/978-1-84800-134-3,
  • W. Tong, Fundamentals of wind energy, WIT press Southampton, UK,44 , 2010. https://doi.org/10.24 95/978-1-84564-205-1/01.
  • I. M. Held, Large-scale dynamics and global warming, Bulletin - American Meteorological Society, 74 (2), ,228–241, 1993. https://doi.org/10.1175/1520-0477(19 93)074<0228:LSDAGW>2.0.CO;2.
  • A. Chaudhuri, R. Datta, M. P. Kumar, J. P. Davim, and S. Pramanik, Energy Conversion Strategies for Wind Energy System: Electrical, Mechanical and Material Aspects, Materials, 15 (3), 1232, 2022. https://doi.org/ 10.3390/ma15031232.
  • A. İlhan, M. Bilgili, M. Sari, and B. Şahin, Economic analyses of onshore commercial large scale wind turbines installed in Turkey, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (1), 170–176,2021. https://doi.org10.28948/ngumuh.866 312.
  • G. M. Shafiullah, A. M.t. Oo, A. B. M. Shawkat Ali, and P. Wolfs, Potential challenges of integrating large-scale wind energy into the power grid-A review, Renewable and Sustainable Energy Reviews, 20, 306–321, 2013. https://doi.org 10.1016/j.rser.2012.11.057.
  • R. Belu, Wind Energy Conversion and Analysis, Encyclopedia of Energy Engineering and Technology, Second Edition, 2140–2161, 2014. https://doi.org /10.1081/e-eee2-120048430.
  • E. Pavlis, Large-Scale Wind Energy Farm Development and its Impacts on the Landscape: A Review of the Greek Case, Journal of Landscape Ecology (Czech Republic), 18, 24–61. 2025. https://doi.org /10.2478/jlecol-2025-0019.
  • N. Aravindhan, M. P. Natarajan, S. Ponnuvel, and P. K. Devan, Recent developments and issues of small-scale wind turbines in urban residential buildings- A review, Energy and Environment, 34 (4), 1142–1169, 2023. https://doi.org/10.1177/0958305X221084038.
  • J. Dowds et al., A review of large-scale wind integration studies, Renewable and Sustainable Energy Reviews, 49, 768–794, 2015. https://doi.org/10.10 16/j.rser.2015.04.134.
  • M. Ragheb, History of harnessing wind power, in Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, Elsevier, 11–20, 2023. https://doi.org/10.1016/B978-0-323-99353-1.00017-7.
  • O. Probst, O. Monroy, J. Martínez, and J. Elizondo, Small Wind Turbine Technology 5 Small Wind Turbine Technology, Wind turbines, 107–136, 2011. https://www.researchgate.net/publication/221911664. Accessed 15 March 2025
  • K. Calautit and C. Johnstone, State-of-the-art review of micro to small-scale wind energy harvesting technologies for building integration, Energy Conversion and Management: X, 20, 100457, 2023. https://doi.org/10.1016/j.ecmx.2023.100457.
  • S. H. Chang, Q. H. Lim, and K. H. Lin, Design of a wind energy capturing device for a vehicle, in Proceedings - International Conference on Intelligent Systems, Modelling and Simulation, ISMS, 2015-Septe, 435–440, 2015. https://doi.org/10.1109/IS MS.2014.80.
  • M. Heragy, T. Kono, and T. Kiwata, Investigating the effects of wind concentrator on power performance improvement of crossflow wind turbine, Energy Conversion and Management,255, 15326, 2022. https://doi.org/10.1016/j.enconman.2022.115326.
  • R. Carriveau, Fundamental and Advanced Topics in Wind Power. BoD–Books on Demand, 2012. https://doi.org/10.5772/731.
  • D. Le Gourieres, Wind power plants: theory and design. Elsevier, 1982. https://doi.org /10.1115/1.3267641.
  • L. Dodson, K. Busawon, and M. Jovanovic, Estimation of the power coefficient in a wind conversion system, in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ’05,2005, 3450–3455,2005. https://doi.org /10.1109/CDC.2005.1582696.
  • V. P. Khambalkar, D. S. Karale, and S. R. Gadge, Performance evaluation of a 2 MW wind power project, Journal of Energy in Southern Africa, 17 (4), 70–75, 2006. https://doi.org/10.17159/2413-3051/2006/v17i4 a3232.
  • B. Desalegn, D. Gebeyehu, and B. Tamirat, Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review, Heliyon, 8 (11), e11263, 2022. https://doi.o rg/j.heliyon.2022.e11263.
  • A. Betz, Introduction to the Theory of Flow Machines. Elsevier, 1966. https://doi.org/10.1016/c2013-0-05426-6.
  • Y. Keleshibieke, Wind turbine optimization, Nazarbayev University, 2019. https://nur.nu.edu.kz/h andle/123456789/3760. Accessed 16 May 2025
  • M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems, Assessment of wind energy potential using wind energy conversion system, Journal of Cleaner Production, 216, 346–360, 2019. https://doi.o rg/10.1016/j.jclepro.2019.01.128.
  • R. C. Bansal, T. S. Bhatti, and D. P. Kothari, On some of the design aspects of wind energy conversion systems, Energy Conversion and Management, 43 (16), 2175–2187, 2002. https://doi.org/10.1016/S0196-8904(01)00166-2.
  • G. Tefera, G. Bright, and S. Adali, Theoretical and computational studies on the optimal positions of NACA airfoils used in horizontal axis wind turbine blades, Journal of Energy Systems, 6 (3), 369–386, 2022. https://doi.org/10.30521/jes.1055935.
  • V. Nelson, Vertical Axis Wind Turbines, Innovative Wind Turbines,1 (40), 63–90, 2019. https://doi.org /10.1201/9781003010883-4.
  • J. Svorcan, O. Peković, A. Simonović, D. Tanović, and M. S. Hasan, Design of optimal flow concentrator for vertical-axis wind turbines using computational fluid dynamics, artificial neural networks and genetic algorithm, Advances in Mechanical Engineering, vol. 13(3), 16878140211009008, 2021. https://doi.org/ 10.1177/16878140211009009.
There are 27 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Research Articles
Authors

Zeynep Aytaç 0000-0003-1828-1181

Halis Deviren 0000-0002-8698-7576

Early Pub Date August 11, 2025
Publication Date October 15, 2025
Submission Date May 7, 2025
Acceptance Date July 5, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Aytaç, Z., & Deviren, H. (2025). The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1211-1221. https://doi.org/10.28948/ngumuh.1694150
AMA Aytaç Z, Deviren H. The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas. NOHU J. Eng. Sci. October 2025;14(4):1211-1221. doi:10.28948/ngumuh.1694150
Chicago Aytaç, Zeynep, and Halis Deviren. “The Impact of a Wind Concentrator System on the Efficiency of Roof-Mounted Wind Turbines in Rural Areas”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1211-21. https://doi.org/10.28948/ngumuh.1694150.
EndNote Aytaç Z, Deviren H (October 1, 2025) The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1211–1221.
IEEE Z. Aytaç and H. Deviren, “The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1211–1221, 2025, doi: 10.28948/ngumuh.1694150.
ISNAD Aytaç, Zeynep - Deviren, Halis. “The Impact of a Wind Concentrator System on the Efficiency of Roof-Mounted Wind Turbines in Rural Areas”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1211-1221. https://doi.org/10.28948/ngumuh.1694150.
JAMA Aytaç Z, Deviren H. The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas. NOHU J. Eng. Sci. 2025;14:1211–1221.
MLA Aytaç, Zeynep and Halis Deviren. “The Impact of a Wind Concentrator System on the Efficiency of Roof-Mounted Wind Turbines in Rural Areas”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1211-2, doi:10.28948/ngumuh.1694150.
Vancouver Aytaç Z, Deviren H. The impact of a wind concentrator system on the efficiency of roof-mounted wind turbines in rural areas. NOHU J. Eng. Sci. 2025;14(4):1211-2.

download