Research Article
BibTex RIS Cite

Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması

Year 2025, Volume: 14 Issue: 4, 1222 - 1233, 15.10.2025

Abstract

Bu çalışmanın amacı, iniş ve kalkış döngüsündeki emisyonları ve yakıt tüketimi modlara göre analiz etmek ve havalimanı işletmecilerine ve karar vericilere çevresel sürdürülebilirlik açısından veriye dayalı iyileştirme önerileri sunmaktır. Bu çalışmada, Airbus A320 ve Boeing B737 uçaklarında yaygın olarak kullanılan sekiz farklı motor tipi için kalkış, tırmanış, yaklaşma ve taksi modlarında üretilen emisyonlar ile yakıt tüketimi sayısal olarak analiz edilmiştir. Her bir uçağın iniş ve kalkış döngüsündeki HC, CO ve NOx emisyonları ile yakıt tüketimi modlara göre karşılaştırılmıştır. Sonuçlara göre, en fazla emisyon ve yakıt tüketimi taksi modunda gerçekleşmekte olup, yeni nesil motorlar (LEAP-1A24, LEAP-1B23) eski nesil motorlara göre daha düşük emisyon üretmektedir. Ayrıca taksi süresinde 8 dakikalık bir azalma, toplam LTO (kalkış, tırmanış, yaklaşma ve taksi döngüsü) emisyonlarını %23’e kadar, yakıt tüketimini ise %13’e kadar azaltabilmektedir. Bu durum, çevresel etkileri azaltmada operasyonel iyileştirmelerin kritik rol oynadığını göstermektedir.

Thanks

Yazarlar, verilerin elde edilmesindeki yardımlarından dolayı ICAO Motor Emisyon Veri Bankasına teşekkür eder.

References

  • Airport Publications 2025. https://store.aci.aero/, Accesed 1 May 2025.
  •    IATA ANNUAL REVIEW 2021. https://www.iat a.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2021.pdf, Accessed 2 May 2025.
  •    J. Scheelhaase, S. Maertens, W. Grimme, and M. Jung, EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport’s CO2 emissions by market-based measures. Journal of Air Transport Management, 67, 55–62, 2018. https://doi.org/10.101 6/j.jairtraman.2017.11.007.
  •    U. Burkhardt and B. Kärcher, Global radiative forcing from contrail cirrus, Nature Climate Change 1(1), 54–58, 2011. https://doi.org/10.1038/nclimate1068.
  •    A. Macintosh and L. Wallace, International aviation emissions to 2025: Can emissions be stabilised without restricting demand? Energy Policy, 37(1), 264–273, 2009. https://doi.org/10.1016/j.enpol.2008.08.029.
  •    European Aviation Environmental Report 2016. https://www.easa.europa.eu/eco/sites/default/files/2021-09/European%20Aviation%20Environmental%2 0Report%202016%20-72dpi.pdf, Accessed 3 May 2025.
  •    X. Wang, Y. Sun, F. Han, and Y. Zhao, Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13. Journal of Environmental Chemical Engineering, 10(3), 107888, 2022. https://doi.org/10.1016/j.jece.2022.107888.
  •    E. Boldo, S. Medina, A. Le Tertre, F. Hurley, H.G. Mücke, F. Ballester and Daniel Eilstein on behalf of the Apheis group, Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. European Journal of Epidemiology, 21(6), 449-458, 2006. https://doi.org/10.1007/s10654-006-9014-0.
  •    N. Li, M. Hao, R. F. Phalen, W. C. Hinds, and A. E. Nel, Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109(3), 250-265 2003. https://doi.org/10.1016/j.clim.2003.08.006.
  • O. B. Okedere, F. B. Elehinafe, S. Oyelami, and A. O. Ayeni, Drivers of anthropogenic air emissions in Nigeria–A review. Heliyon, 7(3), 2021. doi:10.1016/j.heliyon.2021.e06398.
  • S. R. H. Barrett, R. E. Britter, and I. A. Waitz, Global mortality attributable to aircraft cruise emissions. Environmental Science & Technology, 44(19), 7736-7742, 2010. https://doi.org/10.1021/es101325r.
  • S. H. L. Yim et al., Global, regional and local health impacts of civil aviation emissions. Environmental Research Letters, 10(3), 034001, 2015. doi:10.1088/1748-9326/10/3/034001.
  • U. Kesgin, Aircraft emissions at Turkish airports. Energy, 31(2-3), 372-384, 2006. https://doi.org/10.10 16/j.energy.2005.01.012.
  • İ. Yılmaz, Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management, 58, 176–182, 2017. https://doi.org/10.1016/j.jairtram an.2016.11.001.
  • H. Kafali and O. Altuntas, The analysis of emission values from commercial flights at Dalaman international airport Turkey. Aircraft Engineering and Aerospace Technology, 92(10), 1451–1457, 2020. doi: 10.1108/AEAT-12-2019-0253.
  • S. Ekici and Y. Şöhret, A study on the environmental and economic aspects of aircraft emissions at the Antalya International Airport. Environmental Science and Pollution Research, 28(9), 10847–10859, 2021. https://doi.org/10.1007/s11356-020-11306-w.
  • S. Ekici and H. Sevinc, Understanding a commercial airline company: A case study on emissions and air quality costs. International Journal of Environmental Science and Technology, 19(6), 5139–5154, 2022. https://doi.org/10.1007/s13762-021-03471-3.
  • H. Aygun and H. Caliskan, Environmental and enviroeconomic analyses of two different turbofan engine families considering landing and take-off (LTO) cycle and global warming potential (GWP) approach. Energy Conversion and Management, 248, 114797, 2021. https://doi.org/10.1016/j.enconm an.2021.114797.
  • K. Dönmez, R.K. Cecen, A Brief Assessment of Aircraft Fuel Consumption and Pollutant Emissions for Departure Operations. In International Symposium On Sustainable Aviation 11-17. Cham: Springer Nature Switzerland, 2023. https://doi.org/10.1007/978-3-031-70694-3_3.
  • M. A. Çil and C. Tarhan, Investigation of emissions from passenger flights Denizli Çardak Airport, Türkiye. Air Quality, Atmosphere & Health, 17(10), 2395-2403, 2024, https://doi.org/10.1007/s11869-024-01579-2.
  • E. T. Turgut, M. Cavcar, O. Usanmaz, O. D. Yay, T. Dogeroglu, K. Armutlu, Investigating actual landing and takeoff operations for time-in-mode, fuel and emissions parameters on domestic routes in Turkey. Transportation Research Part D: Transport and Environment, 53, 249-262, 2017. https://doi.org/10. 1016/j.trd.2017.04.018.
  • S. L. Kuzu, Estimation and dispersion modeling of landing and take-off (LTO) cycle emissions from Atatürk International Airport. Air Quality, Atmosphere & Health, 11, 153-161, 2018.https://doi.org/10.1007/s 11869-017-0525-5.
  • A. O. Canarslanlar, İniş Kalkış Döngüsündeki Safha Sürelerinin Gerçek Uçuş Verileri Kullanılarak Değerlendirilmesi. Sürdürülebilir Havacılık Araştırmaları Dergisi, 2(1), 38-47, 2017. DOI: 10.23890/SUHAD.2017.0105.
  • Y. Zhou, Y. Jiao, J. Lang, D. Chen, C. Huang, P. Wei, S. Li and S. Cheng, Improved estimation of air pollutant emissions from landing and takeoff cycles of civil aircraft in China. Environmental pollution, 249, 463-471, 2019. https://doi.org/10.1016/j.envpol.20 19.03.0 88.
  • S. H. L. Yim, M. E. J. Stettler, and S. R. H. Barrett, Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmospheric environment, 67, 184-192 2013, https://doi.org/10. 1016/j.atmosenv.2012.10.017.
  • T. Mokalled, S. Le Calvé, N. Badaro-Saliba, M. Abboud, R. Zaarour, W. Farah and J. Adjizian-Gérard, Identifying the impact of Beirut Airport's activities on local air quality-Part I: Emissions inventory of NO2 and VOCs. Atmospheric Environment, 187, 435-444, 2018. https://doi.org/10.1016/j.atmosenv.2018.04.036
  • H. Liu et al., Atmospheric emission inventory of multiple pollutants from civil aviation in China: Temporal trend, spatial distribution characteristics and emission features analysis. Science of The Total Environment, 648, 871–879, 2019. https://doi.org /10.1016/j.scitotenv.2018.07.407.
  • W. Thanjangreed and N. Chuersuwan, Commercial Aircraft Emission Estimates with 1 kmx1 km Resolution: A Case of Departure Flights at Suvarnabhumi Airport EnvironmentAsia 13 (Special issue) Commercial Aircraft Emission Estimates with 1 km x 1 km Resolution: A Case of Departure Flights at Suvarnabhumi Airport. Environment Asia, 13, 10-17, 2020. doi: 10.14456/ea.2020.17.
  • A. Tokuşlu, Calculation of aircraft emissions during landing and take-off (LTO) cycles at Batumi International Airport, Georgia. International Journal of Environment and Geoinformatics, 8(2), 186-192, 2021. https://doi.org/10.30897/ijegeo.836780.
  • X. Zhang, M. Karl, L. Zhang, and J. Wang, Influence of Aviation Emission on the Particle Number Concentration near Zurich Airport. Environmental Science & Technology, 54(22), 14161-14171, 2020. https://doi.org/10.1021/acs.est.0c02249.
  • S. E. Puliafito, Civil aviation emissions in Argentina. Science of The Total Environment, 869, 161675, 2023. https://doi.org/10.1016/j.scitotenv.2023.161675.
  • Key aspects of the Paris Agreement. https://unfccc.int/most-requested/key-aspects-of-the-paris-agreement, Accessed 1 May 2025.
  • S. Kumcu and B. Özyörük, Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 386-394, 2023. https://doi.org/10.28948/ngumuh.1145904.
  • K. Ulusoy, Zonguldak’ta PM2.5 odaklı hava kirliliği-mortalite ilişkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 301-308, 2024. https://doi.org/10.28948/n gumuh.1372285.
  • Ustaoglu, E. Estimation of economic costs of air pollution from road vehicle transportation in Turkey. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1, 2024. https://doi.org/10.28948/ngumuh.1336117.
  • İ. Balcılar, Eskişehir’de hava kirliliği: PM10, PM2. 5 ve SO2 konsantrasyonlarının mekânsal-zamansal değişimi ve kaynaklarının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1115-1126, 2024. https://doi.org/10.289 48/ngumuh.1459990.
  • P. Weijun, Hengheng, Z., Xiaolei, Z., & Tianyi, W. Calculation and analysis of pollutants during takeoff and landing based on airborne data. Environmental Progress & Sustainable Energy, 41(2), e13743, 2022. https://doi.org/10.1002/ep.13743.
  • ICAO Aircraft Engine Emissions Databank. https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank, Accessed 1 May 2025.
  • M. A. Çil, S. Tangöz, and C. Tarhan, Effect of go-around events on the LTO Cycle: emissions and fuel analysis. Air Quality, Atmosphere & Health, 1-11, 2025. https://doi.org/10.1007/s11869-025-01759-8.
  • P. Stefanou and D. Haralambopoulos, Energy demand and environmental pressures due to the operation of Olympic Airways in Greece. Energy, 23(2), 125–136, 1998. https://doi.org/10.1016/S0360-5442(97)00058-3.
  • A. H. H. Ali, and M. N. Ibrahim, Performance and environmental impact of a turbojet engine fueled by blends of biodiesels. International Journal of Environmental Science and Technology, 14, 1253-1266, 2017. https://doi.org/10.1007/s13762-016-1228-4.

Effect of different LTO modes on emissions and fuel distribution: Taxi, climb, approach and take-off comparison

Year 2025, Volume: 14 Issue: 4, 1222 - 1233, 15.10.2025

Abstract

The aim of this study is to analyze emissions and fuel consumption in the landing and take-off cycle by mode and to provide data-driven improvement recommendations to airport operators and decision makers in terms of environmental sustainability. This study, emissions and fuel consumption produced during take-off, climb-out, approach, and taxi modes were numerically analyzed for eight different engine types commonly used in Airbus A320 and Boeing B737 aircraft. and taxi modes. Each aircraft’s contribution to HC, CO, and NOx emissions within the landing and take-off cycle, as well as its fuel consumption, was compared by mode. The results show that taxi mode produces the highest emissions and fuel consumption, while new-generation engines (LEAP-1A24, LEAP-1B23) are more environmentally efficient than older ones. Furthermore, an 8-minute reduction in taxi time can reduce total LTO (take-off, climb, approach and taxi cycle) emissions by up to 23% and fuel consumption by up to 13%. These findings emphasize the importance of operational improvements in minimizing environmental impacts.

References

  • Airport Publications 2025. https://store.aci.aero/, Accesed 1 May 2025.
  •    IATA ANNUAL REVIEW 2021. https://www.iat a.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2021.pdf, Accessed 2 May 2025.
  •    J. Scheelhaase, S. Maertens, W. Grimme, and M. Jung, EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport’s CO2 emissions by market-based measures. Journal of Air Transport Management, 67, 55–62, 2018. https://doi.org/10.101 6/j.jairtraman.2017.11.007.
  •    U. Burkhardt and B. Kärcher, Global radiative forcing from contrail cirrus, Nature Climate Change 1(1), 54–58, 2011. https://doi.org/10.1038/nclimate1068.
  •    A. Macintosh and L. Wallace, International aviation emissions to 2025: Can emissions be stabilised without restricting demand? Energy Policy, 37(1), 264–273, 2009. https://doi.org/10.1016/j.enpol.2008.08.029.
  •    European Aviation Environmental Report 2016. https://www.easa.europa.eu/eco/sites/default/files/2021-09/European%20Aviation%20Environmental%2 0Report%202016%20-72dpi.pdf, Accessed 3 May 2025.
  •    X. Wang, Y. Sun, F. Han, and Y. Zhao, Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13. Journal of Environmental Chemical Engineering, 10(3), 107888, 2022. https://doi.org/10.1016/j.jece.2022.107888.
  •    E. Boldo, S. Medina, A. Le Tertre, F. Hurley, H.G. Mücke, F. Ballester and Daniel Eilstein on behalf of the Apheis group, Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. European Journal of Epidemiology, 21(6), 449-458, 2006. https://doi.org/10.1007/s10654-006-9014-0.
  •    N. Li, M. Hao, R. F. Phalen, W. C. Hinds, and A. E. Nel, Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109(3), 250-265 2003. https://doi.org/10.1016/j.clim.2003.08.006.
  • O. B. Okedere, F. B. Elehinafe, S. Oyelami, and A. O. Ayeni, Drivers of anthropogenic air emissions in Nigeria–A review. Heliyon, 7(3), 2021. doi:10.1016/j.heliyon.2021.e06398.
  • S. R. H. Barrett, R. E. Britter, and I. A. Waitz, Global mortality attributable to aircraft cruise emissions. Environmental Science & Technology, 44(19), 7736-7742, 2010. https://doi.org/10.1021/es101325r.
  • S. H. L. Yim et al., Global, regional and local health impacts of civil aviation emissions. Environmental Research Letters, 10(3), 034001, 2015. doi:10.1088/1748-9326/10/3/034001.
  • U. Kesgin, Aircraft emissions at Turkish airports. Energy, 31(2-3), 372-384, 2006. https://doi.org/10.10 16/j.energy.2005.01.012.
  • İ. Yılmaz, Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management, 58, 176–182, 2017. https://doi.org/10.1016/j.jairtram an.2016.11.001.
  • H. Kafali and O. Altuntas, The analysis of emission values from commercial flights at Dalaman international airport Turkey. Aircraft Engineering and Aerospace Technology, 92(10), 1451–1457, 2020. doi: 10.1108/AEAT-12-2019-0253.
  • S. Ekici and Y. Şöhret, A study on the environmental and economic aspects of aircraft emissions at the Antalya International Airport. Environmental Science and Pollution Research, 28(9), 10847–10859, 2021. https://doi.org/10.1007/s11356-020-11306-w.
  • S. Ekici and H. Sevinc, Understanding a commercial airline company: A case study on emissions and air quality costs. International Journal of Environmental Science and Technology, 19(6), 5139–5154, 2022. https://doi.org/10.1007/s13762-021-03471-3.
  • H. Aygun and H. Caliskan, Environmental and enviroeconomic analyses of two different turbofan engine families considering landing and take-off (LTO) cycle and global warming potential (GWP) approach. Energy Conversion and Management, 248, 114797, 2021. https://doi.org/10.1016/j.enconm an.2021.114797.
  • K. Dönmez, R.K. Cecen, A Brief Assessment of Aircraft Fuel Consumption and Pollutant Emissions for Departure Operations. In International Symposium On Sustainable Aviation 11-17. Cham: Springer Nature Switzerland, 2023. https://doi.org/10.1007/978-3-031-70694-3_3.
  • M. A. Çil and C. Tarhan, Investigation of emissions from passenger flights Denizli Çardak Airport, Türkiye. Air Quality, Atmosphere & Health, 17(10), 2395-2403, 2024, https://doi.org/10.1007/s11869-024-01579-2.
  • E. T. Turgut, M. Cavcar, O. Usanmaz, O. D. Yay, T. Dogeroglu, K. Armutlu, Investigating actual landing and takeoff operations for time-in-mode, fuel and emissions parameters on domestic routes in Turkey. Transportation Research Part D: Transport and Environment, 53, 249-262, 2017. https://doi.org/10. 1016/j.trd.2017.04.018.
  • S. L. Kuzu, Estimation and dispersion modeling of landing and take-off (LTO) cycle emissions from Atatürk International Airport. Air Quality, Atmosphere & Health, 11, 153-161, 2018.https://doi.org/10.1007/s 11869-017-0525-5.
  • A. O. Canarslanlar, İniş Kalkış Döngüsündeki Safha Sürelerinin Gerçek Uçuş Verileri Kullanılarak Değerlendirilmesi. Sürdürülebilir Havacılık Araştırmaları Dergisi, 2(1), 38-47, 2017. DOI: 10.23890/SUHAD.2017.0105.
  • Y. Zhou, Y. Jiao, J. Lang, D. Chen, C. Huang, P. Wei, S. Li and S. Cheng, Improved estimation of air pollutant emissions from landing and takeoff cycles of civil aircraft in China. Environmental pollution, 249, 463-471, 2019. https://doi.org/10.1016/j.envpol.20 19.03.0 88.
  • S. H. L. Yim, M. E. J. Stettler, and S. R. H. Barrett, Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmospheric environment, 67, 184-192 2013, https://doi.org/10. 1016/j.atmosenv.2012.10.017.
  • T. Mokalled, S. Le Calvé, N. Badaro-Saliba, M. Abboud, R. Zaarour, W. Farah and J. Adjizian-Gérard, Identifying the impact of Beirut Airport's activities on local air quality-Part I: Emissions inventory of NO2 and VOCs. Atmospheric Environment, 187, 435-444, 2018. https://doi.org/10.1016/j.atmosenv.2018.04.036
  • H. Liu et al., Atmospheric emission inventory of multiple pollutants from civil aviation in China: Temporal trend, spatial distribution characteristics and emission features analysis. Science of The Total Environment, 648, 871–879, 2019. https://doi.org /10.1016/j.scitotenv.2018.07.407.
  • W. Thanjangreed and N. Chuersuwan, Commercial Aircraft Emission Estimates with 1 kmx1 km Resolution: A Case of Departure Flights at Suvarnabhumi Airport EnvironmentAsia 13 (Special issue) Commercial Aircraft Emission Estimates with 1 km x 1 km Resolution: A Case of Departure Flights at Suvarnabhumi Airport. Environment Asia, 13, 10-17, 2020. doi: 10.14456/ea.2020.17.
  • A. Tokuşlu, Calculation of aircraft emissions during landing and take-off (LTO) cycles at Batumi International Airport, Georgia. International Journal of Environment and Geoinformatics, 8(2), 186-192, 2021. https://doi.org/10.30897/ijegeo.836780.
  • X. Zhang, M. Karl, L. Zhang, and J. Wang, Influence of Aviation Emission on the Particle Number Concentration near Zurich Airport. Environmental Science & Technology, 54(22), 14161-14171, 2020. https://doi.org/10.1021/acs.est.0c02249.
  • S. E. Puliafito, Civil aviation emissions in Argentina. Science of The Total Environment, 869, 161675, 2023. https://doi.org/10.1016/j.scitotenv.2023.161675.
  • Key aspects of the Paris Agreement. https://unfccc.int/most-requested/key-aspects-of-the-paris-agreement, Accessed 1 May 2025.
  • S. Kumcu and B. Özyörük, Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 386-394, 2023. https://doi.org/10.28948/ngumuh.1145904.
  • K. Ulusoy, Zonguldak’ta PM2.5 odaklı hava kirliliği-mortalite ilişkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 301-308, 2024. https://doi.org/10.28948/n gumuh.1372285.
  • Ustaoglu, E. Estimation of economic costs of air pollution from road vehicle transportation in Turkey. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1, 2024. https://doi.org/10.28948/ngumuh.1336117.
  • İ. Balcılar, Eskişehir’de hava kirliliği: PM10, PM2. 5 ve SO2 konsantrasyonlarının mekânsal-zamansal değişimi ve kaynaklarının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1115-1126, 2024. https://doi.org/10.289 48/ngumuh.1459990.
  • P. Weijun, Hengheng, Z., Xiaolei, Z., & Tianyi, W. Calculation and analysis of pollutants during takeoff and landing based on airborne data. Environmental Progress & Sustainable Energy, 41(2), e13743, 2022. https://doi.org/10.1002/ep.13743.
  • ICAO Aircraft Engine Emissions Databank. https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank, Accessed 1 May 2025.
  • M. A. Çil, S. Tangöz, and C. Tarhan, Effect of go-around events on the LTO Cycle: emissions and fuel analysis. Air Quality, Atmosphere & Health, 1-11, 2025. https://doi.org/10.1007/s11869-025-01759-8.
  • P. Stefanou and D. Haralambopoulos, Energy demand and environmental pressures due to the operation of Olympic Airways in Greece. Energy, 23(2), 125–136, 1998. https://doi.org/10.1016/S0360-5442(97)00058-3.
  • A. H. H. Ali, and M. N. Ibrahim, Performance and environmental impact of a turbojet engine fueled by blends of biodiesels. International Journal of Environmental Science and Technology, 14, 1253-1266, 2017. https://doi.org/10.1007/s13762-016-1228-4.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Environmentally Sustainable Engineering, Air Pollution Modelling and Control, Aerospace Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Ali Çil 0000-0001-9322-1563

Selim Tangöz 0000-0002-8284-1326

Early Pub Date August 11, 2025
Publication Date October 15, 2025
Submission Date May 21, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Çil, M. A., & Tangöz, S. (2025). Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1222-1233. https://doi.org/10.28948/ngumuh.1703449
AMA Çil MA, Tangöz S. Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması. NOHU J. Eng. Sci. October 2025;14(4):1222-1233. doi:10.28948/ngumuh.1703449
Chicago Çil, Mehmet Ali, and Selim Tangöz. “Farklı LTO Modlarının Emisyon Ve Yakıt Dağılımına Etkisi: Taksi, Tırmanma, Yaklaşma Ve Kalkış Karşılaştırması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1222-33. https://doi.org/10.28948/ngumuh.1703449.
EndNote Çil MA, Tangöz S (October 1, 2025) Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1222–1233.
IEEE M. A. Çil and S. Tangöz, “Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1222–1233, 2025, doi: 10.28948/ngumuh.1703449.
ISNAD Çil, Mehmet Ali - Tangöz, Selim. “Farklı LTO Modlarının Emisyon Ve Yakıt Dağılımına Etkisi: Taksi, Tırmanma, Yaklaşma Ve Kalkış Karşılaştırması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1222-1233. https://doi.org/10.28948/ngumuh.1703449.
JAMA Çil MA, Tangöz S. Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması. NOHU J. Eng. Sci. 2025;14:1222–1233.
MLA Çil, Mehmet Ali and Selim Tangöz. “Farklı LTO Modlarının Emisyon Ve Yakıt Dağılımına Etkisi: Taksi, Tırmanma, Yaklaşma Ve Kalkış Karşılaştırması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1222-33, doi:10.28948/ngumuh.1703449.
Vancouver Çil MA, Tangöz S. Farklı LTO modlarının emisyon ve yakıt dağılımına etkisi: Taksi, tırmanma, yaklaşma ve kalkış karşılaştırması. NOHU J. Eng. Sci. 2025;14(4):1222-33.

download