Research Article
BibTex RIS Cite

Friction welding of austenitic and martensitic steels for exhaust valve applications

Year 2025, Volume: 14 Issue: 4, 1234 - 1242, 15.10.2025

Abstract

Friction welding, a joining technique for dissimilar metals, is extensively employed in the automotive industry, particularly for applications such as exhaust valves. In service, the valve head is subjected to elevated temperatures, while the stem operates under relatively lower thermal loads. Given these conditions, high-alloy austenitic steel 1.4871 (X53CrMnNiN21-9) is typically utilized for the valve head, whereas the stem is fabricated from high-alloy martensitic steel 1.4718 (X45CrSi9-3). In this study, these two steels were joined via friction welding using eight different welding parameters. Microstructural characterization, Vickers hardness testing, and three-point bending tests were performed to evaluate the mechanical performance and identify the optimal welding parameters. All welded joints exhibited increased hardness in the weld zone, exceeding 800 HV, due to strain hardening induced by severe plastic deformation during the welding process. The maximum flexural strength, measured at 3655.3 MPa, was obtained under a forging pressure of 90 kg/cm² and a burn-off length of 6 mm. Conversely, the minimum flexural strength was recorded at a forging pressure of 70 kg/cm² and a burn-off length of 1.5 mm.

References

  • S. Anık, Kaynak tekniği el kitabı, Yöntemler ve Donanımlar, 1, 40-50, 1991.
  •     M. Khedr, A. Hamada, A. Järvenpää, S. Elkatatny, W. Abd-Elaziem, Review on The Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding processes, Metals, 13, 54, 2022. https://doi.org/10.3390/met13010054.
  •     İ. Çelikyürek, O. Torun, B. Baksan, Microstructure and strength of friction-welded Fe–28Al and 316 L stainless steel, Materials Science and Engineering: A, 528, 8530-8536, 2011. https://doi.org/10.1016/j.msea.2011.08.021.
  •     A. Fall, M. Jahazi, A. Khdabandeh, M. Fesharaki, Effect of process parameters on microstructure and mechanical properties of friction stir-welded Ti–6Al–4V joints, The International Journal of Advanced Manufacturing Technology, 91, 2919-2931, 2017. https://doi.org/10.1007/s00170-016-9527-y.
  •     P. Neeraja, A.K. Senapati, S. Moora, N.D. Borra, R.K. Kottala, Experimental analysis and optimization of friction welding parameters for joining dissimilar materials through design of experiments, International Journal on Interactive Design and Manufacturing (IJIDeM), 19, 405-422, 2025. https://doi.org/10.1007/s12008-024-01823-0.
  •     S. Tomaszewski, D. Grygier, M. Dziubek, Assessment of engine valve materials, Combustion Engines, 62, 48-51, 2023. https://doi.org/10.19206/CE-166569.
  •     S. Sakiyan, H. Sabet, M. Abbasi, Characterization of Mechanical Properties in X45CrSi9-3/ Nimonic 80A Welded by Friction Welding, International Journal of Steel Structures, 17, 319-324, 2017. https://doi.org/10.1007/s13296-016-0003-1.
  •     M.S. Atas, M. Yildirim, Structural properties and cyclic oxidation behavior of Ni-Al-Y superalloys, Metallic Materials/Kovové Materiály, 60, 2022. http://doi.org/10.31577/km.2022.5.281.
  •     K. Gheisari, M.R. Abasi, Microstructure and mechanical properties of the friction welded joint between X53CrMnNiN219 and X45CrSi93 stainless steel, Journal of Advanced Materials and Processing, 5, 81-92, 2017.
  •   K. Kumar, S. Angra, V.K. Mittal, Comparison of failure analysis of Diesel Engine Exhaust Valve made of Inconel Alloy 751 & X45CrSi9-3 Stainless Steel.
  •   M. Atapour, F. Ashrafizadeh, Tribology and cyclic oxidation behavior of plasma nitrided valve steel, Surface and Coatings Technology, 202, 4922-4929, 2008. https://doi.org/10.1016/j.surfcoat.2008.04.051.
  •   M.S. Atas, M. Yildirim, Effect of Nd addition on the microstructure and cyclic oxidation behavior of NiAl–Cr (Mo) eutectic alloys, International Journal of Metalcasting, 18, 1192-1203, 2024. https://doi.org/10.1007/s40962-023-01102-w.
  •   A. Demirel, E.C. Çetin, A. Karakuş, M.Ş. Ataş, M. Yildirim, Microstructural Evolution and oxidation BEhavior of fe-4cr-6ti fErritic alloy with fe2ti lavEs PhasE PrEciPitatEs, Archives of Metallurgy and Materials, 67, 827-836, 2022.
  •   M. Uzkut, B.S. Ünlü, M. Akdag, Determination of optimum welding parameters in connecting high alloyed X53CrMnNiN219 and X45CrSi93 steels by friction welding, Bulletin of Materials Science, 34, 815-823, 2011. https://doi.org/10.1007/s12034-011-0200-7.
  •   S.S. Baghel, P.K. Soni, Mechanical and metallurgical characterization of friction stir welded AA2024 to pure copper using specific variables and positioning, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238, 5014-5025, 2024. https://doi.org/10.1177/09544062231217610.
  •   R. Khajeh, H.R. Jafarian, R. Jabraeili, A.R. Eivani, S.H. Seyedein, N. Park, A. Heidarzadeh, Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness, Journal of Materials Research and Technology, 16, 251-262, 2022. https://doi.org/10.1016/j.jmrt.2021.11.133.
  •   Ş. Kasman, S. Ozan, Sürtünme Karıştırma Kaynağı ile Birleştirilmiş Bağlantılarda Pim Çakışmasının Mekanik Özellikler Üzerine Etkisi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7, 917-928, 2018. https://doi.org/10.28948/ngumuh.445390.
  •   R. Winiczenko, A. Skibicki, P. Skoczylas, The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy, Applied Sciences, 14, 2038, 2024. https://doi.org/10.3390/app14052038.
  •   I. Celikyürek, B. Baksan, O. Torun, G. Arıcı, A. Özcan, The Microstructure and Mechanical Properties of Friction Welded Cast Ni3Al Intermetallic Alloy, Transactions of the Indian Institute of Metals, 71, 775-779, 2016. https://doi.org/10.1007/s12666-016-0888-6.
  •   J. Elmer, D. Kautz, Fundamentals of friction welding, in: Welding, Brazing, and Soldering, ASM International, 1993, pp. (150-155). https://doi.org/10.31399/asm.hb.v06.a0001349.
  •   Y.B. Joo, N. Kim, Induction Thermographic Inspection of Friction Welding Joints in Automobile Engine Valves, 비파괴검사학회지, 44, 491-498, 2024. http://doi.org/10.7779/JKSNT.2024.44.6.491.
  •   H. Das, P. Upadhyay, T. Wang, B. Gwalani, X. Ma, Interfacial reaction during friction stir assisted scribe welding of immiscible Fe and Mg alloy system, Sci Rep, 11, 1588, 2021. https://doi.org/10.1038/s41598-021-81266-9.
  •   A. Kurt, M. Boz, M. Ozdemir, Sürtünme karıştırma kaynağında kaynak hızının birleşebilirliğe etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 19, 2004.
  •   L. Péter, S. Kugler, T. Kolonits, A. Nagy, Composition Profiles at the Metal Substrate–Deposit Interface Produced in Laser-Assisted Additive Manufacturing Processes, Materials, 17, 3125, 2024. https://doi.org/10.3390/ma17133125.
  •   R. Winiczenko, A. Skibicki, P. Skoczylas, The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy, Applied Sciences-Basel, 14, 2038, 2024. https://doi.org/10.3390/app14052038.
  •   J.T. Khairuddin, J. Abdullah, Z. Hussain, I.P. Almanar, Principles and Thermo-Mechanical Model of Friction Stir Welding, Welding processes, 191-216, 2012. https://doi.org/10.5772/50156.
  •   G.M. Gençer, Sürtünme Karıştırma Prosesi ile Elde Edilen Yüzey Metal Matrisli Kompozitlerin Mekanik Özelliklerini Geliştiren Çoklu Mekanizmalar, Mühendis ve Makina, 62, 681-701, 2021. https://doi.org/10.46399/muhendismakina.930170.
  •   D.K. Madhappan, P.K. Palani, D. Thirumalaikumarasamy, T. Sonar, Mechanical properties and microstructural features of rotary friction welded UNS S42000 martensitic stainless-steel joints, Materials Testing, 65, 1311-1321, 2023. https://doi.org/10.1515/mt-2023-0021.
  •   T. Hazlett, Properties of friction welded plain carbon and low alloy steels, Weld. J, 41, 49s-52s, 1962.
  •   G. Di Bella, F. Favaloro, C. Borsellino, Effect of process parameters on friction stir welded joints between dissimilar aluminum alloys: a review, Metals, 13, 1176, 2023. https://doi.org/10.3390/met13071176.
  •   M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, A.M.A. Mahdy, N.A. Alsaleh, E. Ahmed, Heat Input and Mechanical Properties Investigation of Friction Stir Welded AA5083/AA5754 and AA5083/AA7020, Metals, 11, 68, 2020. https://doi.org/10.3390/met11010068.
  •   M. Cheepu, W.S. Che, Effect of Burn-off Length on the Properties of Friction Welded Dissimilar Steel Bars, Journal of Welding and Joining, 37, 46-55, 2019. https://doi.org/10.5781/jwj.2019.37.1.6.
  •   P. Anitha, M. C Majumder, V. Saravanan, S. Rajakumar, Effect of Burn-Off Length for Friction Welded Dissimilar Joints of Inconel 718 and SS410, Journal of Advances in Mechanical Engineering and Science, 4, 30-37, 2018. https://doi.org/10.18831/james.in/2018011003.

Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi

Year 2025, Volume: 14 Issue: 4, 1234 - 1242, 15.10.2025

Abstract

Farklı metallerin sürtünme kaynağı yöntemiyle birleştirilmesi, otomotiv endüstrisinde özellikle egzoz supapları gibi bileşenlerde yaygın olarak kullanılmaktadır. Egzoz supaplarında baş kısmı yüksek sıcaklıklara maruz kalırken, sap kısmı nispeten daha düşük sıcaklıklarda sürtünmeye maruz kalmaktadır. Bu koşullar göz önüne alındığında, egzoz supaplarının baş kısmında genellikle yüksek alaşımlı östenitik çelik 1.4871 (X53CrMnNiN21-9), sap kısmında ise yüksek alaşımlı martenzitik çelik 1.4718 (X45CrSi9-3) tercih edilmektedir. Bu çalışmada, söz konusu iki farklı çelik sekiz farklı parametre kullanılarak sürtünme kaynağı yöntemiyle birleştirilmiştir. Elde edilen numuneler üzerinde mikroyapı analizi, sertlik ölçümleri ve üç nokta eğme testleri gerçekleştirilmiş ve en uygun kaynak parametreleri belirlenmiştir. Tüm numunelerin kaynak bölgesinde plastik deformasyona bağlı olarak sertlik artışı gözlemlenmiş olup, sertlik değerleri 800 HV’nin üzerinde ölçülmüştür. Üç nokta eğme testlerinde en yüksek eğme mukavemeti, 90 kg/cm² yığma basıncı ve 6 mm yığma miktarı ile 3655,3 MPa olarak elde edilmiştir. En düşük mukavemet ise 70 kg/cm² yığma basıncı ve 1,5 mm yığma miktarında gözlemlenmiştir.

Ethical Statement

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Thanks

Bu çalışmada numune tedarikinde yardımcı olan Prof. Dr. Mustafa Acarer’e ve SUPAR firmasına, mekanik testlerin yapımında yardımları olan Dr. Salih Bilal Çetinkal’a ve deneysel verilerin düzenlenmesinde yardımcı olan Doç. Dr. Mehmet Şahin Ataş’a teşekkürlerimi sunarım.

References

  • S. Anık, Kaynak tekniği el kitabı, Yöntemler ve Donanımlar, 1, 40-50, 1991.
  •     M. Khedr, A. Hamada, A. Järvenpää, S. Elkatatny, W. Abd-Elaziem, Review on The Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding processes, Metals, 13, 54, 2022. https://doi.org/10.3390/met13010054.
  •     İ. Çelikyürek, O. Torun, B. Baksan, Microstructure and strength of friction-welded Fe–28Al and 316 L stainless steel, Materials Science and Engineering: A, 528, 8530-8536, 2011. https://doi.org/10.1016/j.msea.2011.08.021.
  •     A. Fall, M. Jahazi, A. Khdabandeh, M. Fesharaki, Effect of process parameters on microstructure and mechanical properties of friction stir-welded Ti–6Al–4V joints, The International Journal of Advanced Manufacturing Technology, 91, 2919-2931, 2017. https://doi.org/10.1007/s00170-016-9527-y.
  •     P. Neeraja, A.K. Senapati, S. Moora, N.D. Borra, R.K. Kottala, Experimental analysis and optimization of friction welding parameters for joining dissimilar materials through design of experiments, International Journal on Interactive Design and Manufacturing (IJIDeM), 19, 405-422, 2025. https://doi.org/10.1007/s12008-024-01823-0.
  •     S. Tomaszewski, D. Grygier, M. Dziubek, Assessment of engine valve materials, Combustion Engines, 62, 48-51, 2023. https://doi.org/10.19206/CE-166569.
  •     S. Sakiyan, H. Sabet, M. Abbasi, Characterization of Mechanical Properties in X45CrSi9-3/ Nimonic 80A Welded by Friction Welding, International Journal of Steel Structures, 17, 319-324, 2017. https://doi.org/10.1007/s13296-016-0003-1.
  •     M.S. Atas, M. Yildirim, Structural properties and cyclic oxidation behavior of Ni-Al-Y superalloys, Metallic Materials/Kovové Materiály, 60, 2022. http://doi.org/10.31577/km.2022.5.281.
  •     K. Gheisari, M.R. Abasi, Microstructure and mechanical properties of the friction welded joint between X53CrMnNiN219 and X45CrSi93 stainless steel, Journal of Advanced Materials and Processing, 5, 81-92, 2017.
  •   K. Kumar, S. Angra, V.K. Mittal, Comparison of failure analysis of Diesel Engine Exhaust Valve made of Inconel Alloy 751 & X45CrSi9-3 Stainless Steel.
  •   M. Atapour, F. Ashrafizadeh, Tribology and cyclic oxidation behavior of plasma nitrided valve steel, Surface and Coatings Technology, 202, 4922-4929, 2008. https://doi.org/10.1016/j.surfcoat.2008.04.051.
  •   M.S. Atas, M. Yildirim, Effect of Nd addition on the microstructure and cyclic oxidation behavior of NiAl–Cr (Mo) eutectic alloys, International Journal of Metalcasting, 18, 1192-1203, 2024. https://doi.org/10.1007/s40962-023-01102-w.
  •   A. Demirel, E.C. Çetin, A. Karakuş, M.Ş. Ataş, M. Yildirim, Microstructural Evolution and oxidation BEhavior of fe-4cr-6ti fErritic alloy with fe2ti lavEs PhasE PrEciPitatEs, Archives of Metallurgy and Materials, 67, 827-836, 2022.
  •   M. Uzkut, B.S. Ünlü, M. Akdag, Determination of optimum welding parameters in connecting high alloyed X53CrMnNiN219 and X45CrSi93 steels by friction welding, Bulletin of Materials Science, 34, 815-823, 2011. https://doi.org/10.1007/s12034-011-0200-7.
  •   S.S. Baghel, P.K. Soni, Mechanical and metallurgical characterization of friction stir welded AA2024 to pure copper using specific variables and positioning, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238, 5014-5025, 2024. https://doi.org/10.1177/09544062231217610.
  •   R. Khajeh, H.R. Jafarian, R. Jabraeili, A.R. Eivani, S.H. Seyedein, N. Park, A. Heidarzadeh, Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness, Journal of Materials Research and Technology, 16, 251-262, 2022. https://doi.org/10.1016/j.jmrt.2021.11.133.
  •   Ş. Kasman, S. Ozan, Sürtünme Karıştırma Kaynağı ile Birleştirilmiş Bağlantılarda Pim Çakışmasının Mekanik Özellikler Üzerine Etkisi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7, 917-928, 2018. https://doi.org/10.28948/ngumuh.445390.
  •   R. Winiczenko, A. Skibicki, P. Skoczylas, The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy, Applied Sciences, 14, 2038, 2024. https://doi.org/10.3390/app14052038.
  •   I. Celikyürek, B. Baksan, O. Torun, G. Arıcı, A. Özcan, The Microstructure and Mechanical Properties of Friction Welded Cast Ni3Al Intermetallic Alloy, Transactions of the Indian Institute of Metals, 71, 775-779, 2016. https://doi.org/10.1007/s12666-016-0888-6.
  •   J. Elmer, D. Kautz, Fundamentals of friction welding, in: Welding, Brazing, and Soldering, ASM International, 1993, pp. (150-155). https://doi.org/10.31399/asm.hb.v06.a0001349.
  •   Y.B. Joo, N. Kim, Induction Thermographic Inspection of Friction Welding Joints in Automobile Engine Valves, 비파괴검사학회지, 44, 491-498, 2024. http://doi.org/10.7779/JKSNT.2024.44.6.491.
  •   H. Das, P. Upadhyay, T. Wang, B. Gwalani, X. Ma, Interfacial reaction during friction stir assisted scribe welding of immiscible Fe and Mg alloy system, Sci Rep, 11, 1588, 2021. https://doi.org/10.1038/s41598-021-81266-9.
  •   A. Kurt, M. Boz, M. Ozdemir, Sürtünme karıştırma kaynağında kaynak hızının birleşebilirliğe etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 19, 2004.
  •   L. Péter, S. Kugler, T. Kolonits, A. Nagy, Composition Profiles at the Metal Substrate–Deposit Interface Produced in Laser-Assisted Additive Manufacturing Processes, Materials, 17, 3125, 2024. https://doi.org/10.3390/ma17133125.
  •   R. Winiczenko, A. Skibicki, P. Skoczylas, The Experimental and FEM Studies of Friction Welding Process of Tungsten Heavy Alloy with Aluminium Alloy, Applied Sciences-Basel, 14, 2038, 2024. https://doi.org/10.3390/app14052038.
  •   J.T. Khairuddin, J. Abdullah, Z. Hussain, I.P. Almanar, Principles and Thermo-Mechanical Model of Friction Stir Welding, Welding processes, 191-216, 2012. https://doi.org/10.5772/50156.
  •   G.M. Gençer, Sürtünme Karıştırma Prosesi ile Elde Edilen Yüzey Metal Matrisli Kompozitlerin Mekanik Özelliklerini Geliştiren Çoklu Mekanizmalar, Mühendis ve Makina, 62, 681-701, 2021. https://doi.org/10.46399/muhendismakina.930170.
  •   D.K. Madhappan, P.K. Palani, D. Thirumalaikumarasamy, T. Sonar, Mechanical properties and microstructural features of rotary friction welded UNS S42000 martensitic stainless-steel joints, Materials Testing, 65, 1311-1321, 2023. https://doi.org/10.1515/mt-2023-0021.
  •   T. Hazlett, Properties of friction welded plain carbon and low alloy steels, Weld. J, 41, 49s-52s, 1962.
  •   G. Di Bella, F. Favaloro, C. Borsellino, Effect of process parameters on friction stir welded joints between dissimilar aluminum alloys: a review, Metals, 13, 1176, 2023. https://doi.org/10.3390/met13071176.
  •   M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, A.M.A. Mahdy, N.A. Alsaleh, E. Ahmed, Heat Input and Mechanical Properties Investigation of Friction Stir Welded AA5083/AA5754 and AA5083/AA7020, Metals, 11, 68, 2020. https://doi.org/10.3390/met11010068.
  •   M. Cheepu, W.S. Che, Effect of Burn-off Length on the Properties of Friction Welded Dissimilar Steel Bars, Journal of Welding and Joining, 37, 46-55, 2019. https://doi.org/10.5781/jwj.2019.37.1.6.
  •   P. Anitha, M. C Majumder, V. Saravanan, S. Rajakumar, Effect of Burn-Off Length for Friction Welded Dissimilar Joints of Inconel 718 and SS410, Journal of Advances in Mechanical Engineering and Science, 4, 30-37, 2018. https://doi.org/10.18831/james.in/2018011003.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Resource Technologies, Metals and Alloy Materials
Journal Section Research Articles
Authors

Gökhan Arıcı 0000-0002-6407-9737

Early Pub Date August 11, 2025
Publication Date October 15, 2025
Submission Date June 18, 2025
Acceptance Date July 13, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Arıcı, G. (2025). Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1234-1242. https://doi.org/10.28948/ngumuh.1721953
AMA Arıcı G. Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi. NOHU J. Eng. Sci. October 2025;14(4):1234-1242. doi:10.28948/ngumuh.1721953
Chicago Arıcı, Gökhan. “Egzoz Supap Uygulamaları Için östenitik-Martenzitik çeliklerin Sürtünme Kaynağı Ile Birleştirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1234-42. https://doi.org/10.28948/ngumuh.1721953.
EndNote Arıcı G (October 1, 2025) Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1234–1242.
IEEE G. Arıcı, “Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1234–1242, 2025, doi: 10.28948/ngumuh.1721953.
ISNAD Arıcı, Gökhan. “Egzoz Supap Uygulamaları Için östenitik-Martenzitik çeliklerin Sürtünme Kaynağı Ile Birleştirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1234-1242. https://doi.org/10.28948/ngumuh.1721953.
JAMA Arıcı G. Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi. NOHU J. Eng. Sci. 2025;14:1234–1242.
MLA Arıcı, Gökhan. “Egzoz Supap Uygulamaları Için östenitik-Martenzitik çeliklerin Sürtünme Kaynağı Ile Birleştirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1234-42, doi:10.28948/ngumuh.1721953.
Vancouver Arıcı G. Egzoz supap uygulamaları için östenitik-martenzitik çeliklerin sürtünme kaynağı ile birleştirilmesi. NOHU J. Eng. Sci. 2025;14(4):1234-42.

download