Research Article
BibTex RIS Cite

Utilization of domestic nickel oxide powders in microtubular solid oxide fuel cells

Year 2025, Volume: 14 Issue: 4, 1261 - 1270, 15.10.2025

Abstract

In this study, microtubular anode supports for solid oxide fuel cells (SOFCs) are fabricated using various nickel oxide (NiO) powders from both commercial and domestic sources. Unlike the commonly used extrusion method, an alternative process involving tape casting, winding, and isostatic pressing is employed. Additional cell layers are applied via dip-coating to form complete cells for performance testing. Electrochemical tests are conducted at an operating temperature of 800 ºC using a custom-designed single-cell test system. Microstructural analyses and chemical assessments reveal that variations in cell performance are mainly due to differences in anode support microstructure, porosity, and the purity and particle size of the nickel oxide powders. The cell fabricated using commercial nickel oxide powders exhibits the highest peak power density of 0.286 W/cm2. Among the cells prepared with domestic powders, the highest maximum performance of 0.252 W/cm2 is achieved using powder containing 98.01% nickel oxide. These findings highlight the strong potential of domestically produced NiO powders as viable anode materials in solid oxide fuel cells.

References

  • J. Incer-Valverde, J. Mörsdorf, T. Morosuk and G. Tsatsaronis, Power-to-liquid hydrogen: Exergy-based evaluation of a large-scale system. International Journal of Hydrogen Energy, 48(31), 11612-11627, 2023. https://doi.org/10.1016/j.ijhydene.2021.09.026.
  • Q. Xu, Z. Guo, L. Xia, Q. He, Z. Li, I. T. Bello, K. Zheng and M. Ni, A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Conversion and Management, 253, 115175, 2022. https://doi.org/10.1 016/j.enconm an.2021.115175.
  • K. A. Kuterbekov, A. V. Nikonov, K. Z. Bekmyrza, N. B. Pavzderin, A. M. Kabyshev, M. M. Kubenova, G. D. Kabdrakhimova and N. Aidarbekov, Classification of Solid Oxide Fuel Cells. Nanomaterials, 12(7), 1059, 2022. https:// doi.org/10.3390/nano12071059.
  • M. F. Vostakola and B. A. Horri, Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review. Energies, 14(5), 1280, 2021. https://doi.org/ 10.3390/en14051280.
  • R. Chen, Y. Gao, J. Gao, H. Zhang, M. Motola, M. B. Hanif and C.X. Li, From concept to commercialization: A review of tubular solid oxide fuel cell technology. Journal of Energy Chemistry, 97, 79-109, 2024. https://doi.or g/10.1016/j.jechem.2024.05.026.
  • M. Z. Khan, A. Iltaf, H. A. Ishfaq, F. N. Khan, W. H. Tanveer, R. H. Song, M. T. Mehran, M. Saleem, A. Hussain and Z. Masaud, Flat-tubular solid oxide fuel cells and stacks: a review. Journal of Asian Ceramic Societies, 9(3), 745-770, 2021. https://doi.org/10.1080/21870764.2021.1920135.
  • J. Wang, Y. Zhao, J. Yang, J. Sang, A. Wu, J. Wang, W. Guan, L. Jiang and S. C. Singhal, Understanding thermal and redox cycling behaviors of flat-tube solid oxide fuel cells. International Journal of Hydrogen Energy, 48(57), 21886-21897, 2023. https://doi .org/10.1016/j.ijhydene.2023.03.062.
  • D. Chen, Y. Xu, B. Hu, C. Yan and L. Lu, Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature. Energy Conversion and Management, 171, 807-814, 2018. https://doi. org/10.1016/j.enconman.2018.06.036.
  • S. Z. Golkhatmi, M. I. Asghar and P. D. Lund, A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renewable and Sustainable Energy Reviews, 161, 1-34, 2022. https://doi.org/10.1016/j.rser.2022.112339.
  • O. Corigliano, L. Pagnotta, and P. Fragiacomo, On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review. Sustainability, 14(22), 15276, 2022. https://doi. org/10.3390/su142215276.
  • L. S. Mahmud, A. Muchtar and M. R. Somalu, Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 72, 105-116, 2017. https://doi.org/10.1016/j.rser.20 17.01.019.
  • Z. Zakaria, Z. A. Mat, S. H. Abu Hassan and Y. B. Kar, A review of solid oxide fuel cell component fabrication methods toward lowering temperature. International Journal of Energy Research, 44(2), 594-611, 2020. https://doi.org/10.1002/er.4907.
  • Q. Zhang, K. Xie, Y. Luo, Y. C. Zhang and W. C. Jiang, Mismatch effect of material creep strength on creep damage and failure probability of planar solid oxide fuel cell. International Journal of Hydrogen Energy, 47(4), 2673-2684, 2022. https://doi.org/10.10 16/j.ijhydene.2021.10.185.
  • B. Zhao, Z. Zeng, C. Hao, A. Essaghouri, Y. Qian, W. Zhuge, Y. Wang, Y. Shi and Y. Zhang, A study of mass transfer characteristics of secondary flows in a tubular solid oxide fuel cell for power density improvement. International Journal of Energy Research, 46(13), 18426-18444, 2022. https://doi.org/10.1002/er.8455.
  • K. Kendall, Progress in Microtubular Solid Oxide Fuel Cells. International Journal of Applied Ceramic Technology, 7(1), 1-9, 2010. https://doi.org/10.11 11/j.17 44-7402.2008.02350.x.
  • B. Hari, J. P. Brouwer, A. Dhir and R. Steinberger-Wilckens, A computational fluid dynamics and finite element analysis design of a microtubular solid oxide fuel cell stack for fixed wing mini unmanned aerial vehicles. International Journal of Hydrogen Energy, 44(16), 8519-8532, 2019. https://doi.org/10.10 16/j.ijhydene.2019.01.170.
  • H. Nakajima and T. Kitahara, Real-time electrochemical impedance spectroscopy diagnosis of the solid oxide fuel cell for marine power applications. Heat and Mass Transfer, 54, 2551-2558, 2018. https://doi. org/10.1007/s00231-017-2215-0.
  • J. Van herle, R. Ihringer, N. M. Samme, G. Tompsett, K. Kendall, K. Yamada, C. Wen, T. Kawada, M. Ihara and J. Mizusaki, Concept and technology of SOFC for electric vehicles. Solid State Ionics, 132(3-4), 333-342, 2000. https://doi.org/10.1016/S0167-2738(00)00649-4.
  • G. A. Tompsett, C. Finnerty, K. Kendall, T. Alston and N. M. Sammes, Novel applications for micro-SOFCs. Journal of Power Sources, 86(1-2), 376-382, 2000. https://doi.org/10.1016/S0378-7753(99)00418-8.
  • X. Tong, A. Li, H. Han, C. Yuan, Y. Zhang, P. Li, L. Wang, C. Dong and Z. Zhan, Electrolyte-supported solid oxide electrochemical cells for versatile operations. Ceramics International, 50(24), 54620-54629, 2024. https://doi.org/10.1016/j.ceramint.20 24.10.320.
  • M. Kusnezoff, N. Trofimenko, M. Müller and A. Michaelis, Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells. Materials, 9(11), 906, 2016. https://doi.org/10.3390/ma9110906.
  • A. Jana, I. Kraleva, J. Schlacher, P. Supancic, A. Egger, E. Bucher and R. Bermejo, Towards high-strength electrolyte-supported solid oxide fuel cells. Journal of the European Ceramic Society, 45(2), 116929, 2025. https://doi.org/10.1016/j.jeurceramsoc.2024.116929.
  • M. Riegraf, I. Bombarda, F. Dömling, T. Liensdorf, C. Sitzmann, N. Langhof, S. Schafföner, F. Han, N. Sata, C. Geipel, C. Walter and R. Costa, Enhancing the Mechanical Strength of Electrolyte-Supported Solid Oxide Cells with Thin and Dense Doped-Ceria Interlayers. ACS Applied Materials & Interfaces, 13(42), 49879-49889, 2021. https://pubs.acs.org/do i/10.1021/acsami.1c13899.
  • Y. Y. Chen and W. C. J. Wei, Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC. Solid State Ionics, 177(3-4), 351-357, 2006. https://doi.org/10.10 16/j.ssi.2005.10.010.
  • D. Saebea, S. Authayanun, Y. Patcharavorachot, N. Chatrattanawet and A. Arpornwichanop, Electrochemical performance assessment of low-temperature solid oxide fuel cell with YSZ-based and SDC-based electrolytes. International Journal of Hydrogen Energy, 43(2), 921-931, 2018. https://doi.org/10.1016/j.ijhydene.2017.09.173.
  • Y. J. Xue, H. Miao, C. R. He, J. X. Wang, M. Liu, S. S. Sun, Q. Wang and W. G. Wang, Electrolyte supported solid oxide fuel cells with the super large size and thin ytterbia stabilized zirconia substrate. Journal of Power Sources, 279, 610-619, 2015. https://doi.org/10.10 16/j.jpow sour.2015.01.058.
  • K. M. Fashalameh, Z. Sadeghian and R. Ebrahimi, A high-performance planar anode-supported solid oxide fuel cell with hierarchical porous structure through slurry-based three-dimensional printing. Journal of Alloys and Compounds, 916, 165406, 2022. https://doi.org/10.1016/j.j allcom.2022.165406.
  • J. Lach, K. Zheng, R. Kluczowski, A. Niemczyk, H. Zhao and M. Chen, Tuning Cu-Content La1−xSrxNi1−yCuyO3−δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs. Materials, 15(24), 8737, 2022. https://doi.org/10.3390/ma15248737.
  • B. Hu, G. Lau, D. Song, Y. Fukuyama and M. C. Tucker, Optimization of metal-supported solid oxide fuel cells with a focus on mass transport. Journal of Power Sources, 555, 232402, 2023. https://d oi.org/10.1016/j.jpowsour.2022.232402.
  • Z. Zhang, H. Du, K. Xu, X. Zhang, X. Ma and S. Shuai, Review of the Application of Metal-Supported Solid Oxide Fuel Cell in the Transportation Field. Automotive Innovation, 1-29, 2025. https://doi.org/10.1007/s42154-024-00316-w.
  • J. Lee, S. Kang, H. Lee, K. Lee, G. Han, S. Lee, D. H. Peck and J. Bae, Development of metal-supported solid oxide fuel cells with a thin-film electrolyte under an oxidizing atmosphere. Journal of Power Sources Advances, 33, 100177, 2025. https://doi.org/10.10 16/j.powera.2025.100177.
  • A. A. Solovyev, A. V. Shipilova, S. V. Rabotkin, N. M. Bogdanovich and E. Yu Pikalova, Study of the efficiency of composite LaNi0.6Fe0.4O3-based cathodes in intermediate-temperature anode-supported SOFCs. International Journal of Hydrogen Energy, 48(59), 22594-22609, 2023. https://doi.org/10.10 16/j.ijhydene.202 3.02.011.
  • C. Mendonça, A. Ferreira, and D. M. F. Santos, Towards the Commercialization of Solid Oxide Fuel Cells: Recent Advances in Materials and Integration Strategies. Fuels, 2(4), 393-419, 2021. https://d oi.org/10.3390/fuels2040023.
  • N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337, 2015. https://doi.org/10.10 16/j.pma tsci.2015.01.001.
  • F. R. Bianchi, A. K. Padinjarethil, A. Hagen and B. Bosio, Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance. Electrochimica Acta, 460, 142589, 2023. https://doi. org/10.1016/j.electacta.2023.142589.
  • M. Singh, D. Zappa and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674, 2021. https://doi.org/10.10 16/j.ijhy dene.2021.06.020.
  • Y. Liu, Z. Shao, T. Mori and S. P. Jiang, Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future. Materials Reports: Energy, 1(1), 100003, 2021. https://doi.org/10.1016/j.m atre.2020.11.002.
  • A. Bieberle and L.J. Gauckler, Ni-Based SOFC Anodes: Microstructure and Electrochemistry. International Journal of Materials Research, 92 (7), 796-802, 2001. https://doi.org/10.1515/ijmr-2001-0146.
  • Y. Zou, T. Lin, Y. Sun, Z. Chen, C. Guan, Y. Li, S. P. Jiang, N. Ai and K. Chen, Anodic polarization creates an electrocatalytically active Ni anode/electrolyte interface and mitigates the coarsening of Ni phase in SOFC. Electrochimica Acta, 391, 138912, 2021. https://doi.org/10.1016/j.electacta.2021.138912.
  • D. Cui, R. Kato, Y. Komatsu, A. Sciazko, B. Wang, Y. Xu, S. Wu, D. Chen, R. Xiao and N. Shikazono, Microstructure evolution of SOFC pure Ni anode with carbon deposition under polarization. Chemical Engineering Journal, 511, 161875, 2025. https://doi.org/10.1016/j.cej.2025.161875.
  • F. R. Bianchi, A. K. Padinjarethil, A. Hagen and B. Bosio, Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance. Electrochimica Acta, 460, 142589, 2023. https://doi.org/10.1016/j.electacta.2023.142589.
  • K. X. Lee, B. Hu, P. K. Dubey, M. R. Anisur, S. Belko, A. N. Aphale and P. Singh, High-entropy alloy anode for direct internal steam reforming of methane in SOFC. International Journal of Hydrogen Energy, 47 (90), 38372-38385, 2022. https://doi.org/10.1016/j.ijhydene.2022.09.018.
  • T. Kim, H. J. Kim, D. Go, J. W. Shin, B. C. Yang, G. Y. Cho, T. M. Gür and J. An, Reactive sputtered Ni-SDC cermet alloy anode for low-temperature solid oxide fuel cell. Journal of Alloys and Compounds, 924, 166332, 2022. https://doi.org/10.1016/j.jallcom.2022.166332.
  • N. H. Hadi, M. R. Somalu, A. A. Samat, A. Muchtar, N. A. Baharuddin and M. Anwar, A review on the preparation of anode materials and anode films for solid oxide fuel cell applications. International Journal of Energy Research, 45, 14357-14388, 2021. https://doi.org/10.1002/er.6763.
  • J. Geng, Q. Guo, J. Pan, B. Chi and J. Pu, Improvement of Fe addition on redox stability of Ni/YSZ composite anode for intermediate temperature solid oxide fuel cell. Renewable Energy, 240, 122236, 2025. https://doi.org/10.1016/j.renene.2024.122236.
  • N. Ahmed, S. Devi, M. A. Dar, S. K. M. Ibrahim, A. Sharma, N. Sharma, S. Paul and S. R. Ahamed, Anode material for solid oxide fuel cell: a review. Indian Journal of Physics, 98, 877-888, 2024. https://doi.org/10.1007/s12648-023-02860-3.
  • Q. Fu, C. Tian, L. Hun, X. Wang, Z. Li, Z. Liu and W. Wei, Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization. Energy, 289, 129997, 2024. https://doi.org/10.1016/j.energy.2023.129997.
  • G. Eroğlu ve Y. Z. Akgök, Dünyada ve Türkiye’de Nikel. Maden Tetkik Arama Genel Müdürlüğü Fizibilite Etütleri Daire Başkanlığı, 2018.
  • M. Islam and K. Sohag, Mineral import demand and wind energy deployment in the USA: Co-integration and counterfactual analysis approaches. Mineral Economics, 36(4), S697-S717, 2023. https://doi. org/10.1007/s13563- 023-00382-2.
  • A.D. Dalvi, W.G. Bacon and R.C. Osborne, The past and future of nickel latertites. PDAC 2004 International Convention, 7–10 Mart, 2004.
  • D. R. Qi, T. G. Lan, Q. Shu, Y. Feng and S. H. Zhou, Nickel enrichment during lateritization of ophiolitic ultramafic rocks: A case study from the Kelurahan Pondidrha laterite profile in Sulawesi, Indonesia. Ore Geology Reviews, 106140, 2024. https://doi.org/10.10 16/j.oregeorev.2024.106140.
  • M. Elias, Nickel laterite deposits-geological overview, resources and exploitation. Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 4, 205-220, 2002.
  • M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, Characteristic length of oxide-ıon conduction for prediction of active thickness in SOFC anode. ECS Transactions, 57(1), 2515, 2013. https://doi.org/10.11 49/05701.2515ecst.
  • G. Cai, Y. Zhang, H. Dai, S. He, L. Ge, H. Chen and L. Guo, Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell. Materials Letters, 195, 232-235, 2017. https://doi.org/10.101 6/j.ma tlet.2017.02.095.
  • H. Seo, M. Kishimoto, T. Nakagawa, H. Iwai and H. Yoshida, Mechanism of improved electrochemical performance of anode-supported solid oxide fuel cells by mesostructural modification of electrode–electrolyte interface. Journal of Power Sources, 506, 230107, 2021. https://doi.org/10.1016/j.jpowsour.2021.230107.
  • D. Yin, J. Wang, M. Ni, P. Liu, Z. Dong and D. Tang, Fabrication of Highly Transparent Y2O3 Ceramics with CaO as Sintering Aid. Materials, 14(2), 444, 2021. https://doi.org/10.3390/ma1402 0444.
  • Z. M. Zhang, J. H. Li, Y. N. Liang, Y. Gao and C. X. Li, Yb/Sc Co-doped ZrO2 electrolytes enabled by Al2O3 sintering aid: High conductivity and enhanced stability for solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, 139, 425-434, 2025. https://doi.org/10.1016/j.ijhydene.20 25.05.274.
  • Q. Liang, P. Tang, J. Zhou, J. Bai, D. Tian, X. Zhu, D. Zhou, N. Wang and W. Yan, Effect of MgO and Fe2O3 dual sintering aids on the microstructure and electrochemical performance of the solid state Gd0.2Ce0.8O2-δ electrolyte in intermediate-temperature solid oxide fuel cells. Frontiers in Chemistry, 10, 991922, 2022. https://doi.org/10.33 89/fchem.2022.991922.

Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı

Year 2025, Volume: 14 Issue: 4, 1261 - 1270, 15.10.2025

Abstract

Bu çalışmada, katı oksit yakıt pili (KOYP) için mikrotüp anot destek yapıları, ticari ve yerli kaynaklı çeşitli nikel oksit (NiO) tozları kullanılarak üretilmiştir. Literatürde yaygın olan ekstrüzyon yönteminden farklı olarak, destek yapılar şerit döküm, sarım ve izostatik presleme adımlarını içeren alternatif bir yöntemle imal edilmiştir. Diğer katmanlar, tam hücre oluşturmak üzere daldırma kaplama yöntemiyle uygulanmıştır. Elektrokimyasal testler, özel olarak tasarlanmış tek hücreli bir test sistemiyle 800 ºC’de gerçekleştirilmiştir. Mikroyapısal analizler ve tozların kimyasal bileşim değerlendirmeleri, hücre performansındaki farklılıkların özellikle anot destek yapısının mikroyapısı, gözeneklilik düzeyi ve kullanılan NiO tozlarının saflık derecesi ve tane boyutuna bağlı olduğunu göstermiştir. Ticari NiO tozları ile üretilen hücre, 0.286 W/cm2 ile en yüksek tepe güç yoğunluğunu sergilemiştir. Yerli tozlarla üretilen hücreler arasında ise, %98.01 saflıktaki NiO tozu ile hazırlanan hücre 0.252 W/cm2 maksimum güç yoğunluğuna ulaşmıştır. Bu sonuçlar, yerli NiO tozlarının KOYP'lerde anot malzemesi olarak kullanılabilirliğini göstermekte ve önemli bir potansiyele işaret etmektedir.

References

  • J. Incer-Valverde, J. Mörsdorf, T. Morosuk and G. Tsatsaronis, Power-to-liquid hydrogen: Exergy-based evaluation of a large-scale system. International Journal of Hydrogen Energy, 48(31), 11612-11627, 2023. https://doi.org/10.1016/j.ijhydene.2021.09.026.
  • Q. Xu, Z. Guo, L. Xia, Q. He, Z. Li, I. T. Bello, K. Zheng and M. Ni, A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Conversion and Management, 253, 115175, 2022. https://doi.org/10.1 016/j.enconm an.2021.115175.
  • K. A. Kuterbekov, A. V. Nikonov, K. Z. Bekmyrza, N. B. Pavzderin, A. M. Kabyshev, M. M. Kubenova, G. D. Kabdrakhimova and N. Aidarbekov, Classification of Solid Oxide Fuel Cells. Nanomaterials, 12(7), 1059, 2022. https:// doi.org/10.3390/nano12071059.
  • M. F. Vostakola and B. A. Horri, Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review. Energies, 14(5), 1280, 2021. https://doi.org/ 10.3390/en14051280.
  • R. Chen, Y. Gao, J. Gao, H. Zhang, M. Motola, M. B. Hanif and C.X. Li, From concept to commercialization: A review of tubular solid oxide fuel cell technology. Journal of Energy Chemistry, 97, 79-109, 2024. https://doi.or g/10.1016/j.jechem.2024.05.026.
  • M. Z. Khan, A. Iltaf, H. A. Ishfaq, F. N. Khan, W. H. Tanveer, R. H. Song, M. T. Mehran, M. Saleem, A. Hussain and Z. Masaud, Flat-tubular solid oxide fuel cells and stacks: a review. Journal of Asian Ceramic Societies, 9(3), 745-770, 2021. https://doi.org/10.1080/21870764.2021.1920135.
  • J. Wang, Y. Zhao, J. Yang, J. Sang, A. Wu, J. Wang, W. Guan, L. Jiang and S. C. Singhal, Understanding thermal and redox cycling behaviors of flat-tube solid oxide fuel cells. International Journal of Hydrogen Energy, 48(57), 21886-21897, 2023. https://doi .org/10.1016/j.ijhydene.2023.03.062.
  • D. Chen, Y. Xu, B. Hu, C. Yan and L. Lu, Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature. Energy Conversion and Management, 171, 807-814, 2018. https://doi. org/10.1016/j.enconman.2018.06.036.
  • S. Z. Golkhatmi, M. I. Asghar and P. D. Lund, A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renewable and Sustainable Energy Reviews, 161, 1-34, 2022. https://doi.org/10.1016/j.rser.2022.112339.
  • O. Corigliano, L. Pagnotta, and P. Fragiacomo, On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review. Sustainability, 14(22), 15276, 2022. https://doi. org/10.3390/su142215276.
  • L. S. Mahmud, A. Muchtar and M. R. Somalu, Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 72, 105-116, 2017. https://doi.org/10.1016/j.rser.20 17.01.019.
  • Z. Zakaria, Z. A. Mat, S. H. Abu Hassan and Y. B. Kar, A review of solid oxide fuel cell component fabrication methods toward lowering temperature. International Journal of Energy Research, 44(2), 594-611, 2020. https://doi.org/10.1002/er.4907.
  • Q. Zhang, K. Xie, Y. Luo, Y. C. Zhang and W. C. Jiang, Mismatch effect of material creep strength on creep damage and failure probability of planar solid oxide fuel cell. International Journal of Hydrogen Energy, 47(4), 2673-2684, 2022. https://doi.org/10.10 16/j.ijhydene.2021.10.185.
  • B. Zhao, Z. Zeng, C. Hao, A. Essaghouri, Y. Qian, W. Zhuge, Y. Wang, Y. Shi and Y. Zhang, A study of mass transfer characteristics of secondary flows in a tubular solid oxide fuel cell for power density improvement. International Journal of Energy Research, 46(13), 18426-18444, 2022. https://doi.org/10.1002/er.8455.
  • K. Kendall, Progress in Microtubular Solid Oxide Fuel Cells. International Journal of Applied Ceramic Technology, 7(1), 1-9, 2010. https://doi.org/10.11 11/j.17 44-7402.2008.02350.x.
  • B. Hari, J. P. Brouwer, A. Dhir and R. Steinberger-Wilckens, A computational fluid dynamics and finite element analysis design of a microtubular solid oxide fuel cell stack for fixed wing mini unmanned aerial vehicles. International Journal of Hydrogen Energy, 44(16), 8519-8532, 2019. https://doi.org/10.10 16/j.ijhydene.2019.01.170.
  • H. Nakajima and T. Kitahara, Real-time electrochemical impedance spectroscopy diagnosis of the solid oxide fuel cell for marine power applications. Heat and Mass Transfer, 54, 2551-2558, 2018. https://doi. org/10.1007/s00231-017-2215-0.
  • J. Van herle, R. Ihringer, N. M. Samme, G. Tompsett, K. Kendall, K. Yamada, C. Wen, T. Kawada, M. Ihara and J. Mizusaki, Concept and technology of SOFC for electric vehicles. Solid State Ionics, 132(3-4), 333-342, 2000. https://doi.org/10.1016/S0167-2738(00)00649-4.
  • G. A. Tompsett, C. Finnerty, K. Kendall, T. Alston and N. M. Sammes, Novel applications for micro-SOFCs. Journal of Power Sources, 86(1-2), 376-382, 2000. https://doi.org/10.1016/S0378-7753(99)00418-8.
  • X. Tong, A. Li, H. Han, C. Yuan, Y. Zhang, P. Li, L. Wang, C. Dong and Z. Zhan, Electrolyte-supported solid oxide electrochemical cells for versatile operations. Ceramics International, 50(24), 54620-54629, 2024. https://doi.org/10.1016/j.ceramint.20 24.10.320.
  • M. Kusnezoff, N. Trofimenko, M. Müller and A. Michaelis, Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells. Materials, 9(11), 906, 2016. https://doi.org/10.3390/ma9110906.
  • A. Jana, I. Kraleva, J. Schlacher, P. Supancic, A. Egger, E. Bucher and R. Bermejo, Towards high-strength electrolyte-supported solid oxide fuel cells. Journal of the European Ceramic Society, 45(2), 116929, 2025. https://doi.org/10.1016/j.jeurceramsoc.2024.116929.
  • M. Riegraf, I. Bombarda, F. Dömling, T. Liensdorf, C. Sitzmann, N. Langhof, S. Schafföner, F. Han, N. Sata, C. Geipel, C. Walter and R. Costa, Enhancing the Mechanical Strength of Electrolyte-Supported Solid Oxide Cells with Thin and Dense Doped-Ceria Interlayers. ACS Applied Materials & Interfaces, 13(42), 49879-49889, 2021. https://pubs.acs.org/do i/10.1021/acsami.1c13899.
  • Y. Y. Chen and W. C. J. Wei, Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC. Solid State Ionics, 177(3-4), 351-357, 2006. https://doi.org/10.10 16/j.ssi.2005.10.010.
  • D. Saebea, S. Authayanun, Y. Patcharavorachot, N. Chatrattanawet and A. Arpornwichanop, Electrochemical performance assessment of low-temperature solid oxide fuel cell with YSZ-based and SDC-based electrolytes. International Journal of Hydrogen Energy, 43(2), 921-931, 2018. https://doi.org/10.1016/j.ijhydene.2017.09.173.
  • Y. J. Xue, H. Miao, C. R. He, J. X. Wang, M. Liu, S. S. Sun, Q. Wang and W. G. Wang, Electrolyte supported solid oxide fuel cells with the super large size and thin ytterbia stabilized zirconia substrate. Journal of Power Sources, 279, 610-619, 2015. https://doi.org/10.10 16/j.jpow sour.2015.01.058.
  • K. M. Fashalameh, Z. Sadeghian and R. Ebrahimi, A high-performance planar anode-supported solid oxide fuel cell with hierarchical porous structure through slurry-based three-dimensional printing. Journal of Alloys and Compounds, 916, 165406, 2022. https://doi.org/10.1016/j.j allcom.2022.165406.
  • J. Lach, K. Zheng, R. Kluczowski, A. Niemczyk, H. Zhao and M. Chen, Tuning Cu-Content La1−xSrxNi1−yCuyO3−δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs. Materials, 15(24), 8737, 2022. https://doi.org/10.3390/ma15248737.
  • B. Hu, G. Lau, D. Song, Y. Fukuyama and M. C. Tucker, Optimization of metal-supported solid oxide fuel cells with a focus on mass transport. Journal of Power Sources, 555, 232402, 2023. https://d oi.org/10.1016/j.jpowsour.2022.232402.
  • Z. Zhang, H. Du, K. Xu, X. Zhang, X. Ma and S. Shuai, Review of the Application of Metal-Supported Solid Oxide Fuel Cell in the Transportation Field. Automotive Innovation, 1-29, 2025. https://doi.org/10.1007/s42154-024-00316-w.
  • J. Lee, S. Kang, H. Lee, K. Lee, G. Han, S. Lee, D. H. Peck and J. Bae, Development of metal-supported solid oxide fuel cells with a thin-film electrolyte under an oxidizing atmosphere. Journal of Power Sources Advances, 33, 100177, 2025. https://doi.org/10.10 16/j.powera.2025.100177.
  • A. A. Solovyev, A. V. Shipilova, S. V. Rabotkin, N. M. Bogdanovich and E. Yu Pikalova, Study of the efficiency of composite LaNi0.6Fe0.4O3-based cathodes in intermediate-temperature anode-supported SOFCs. International Journal of Hydrogen Energy, 48(59), 22594-22609, 2023. https://doi.org/10.10 16/j.ijhydene.202 3.02.011.
  • C. Mendonça, A. Ferreira, and D. M. F. Santos, Towards the Commercialization of Solid Oxide Fuel Cells: Recent Advances in Materials and Integration Strategies. Fuels, 2(4), 393-419, 2021. https://d oi.org/10.3390/fuels2040023.
  • N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337, 2015. https://doi.org/10.10 16/j.pma tsci.2015.01.001.
  • F. R. Bianchi, A. K. Padinjarethil, A. Hagen and B. Bosio, Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance. Electrochimica Acta, 460, 142589, 2023. https://doi. org/10.1016/j.electacta.2023.142589.
  • M. Singh, D. Zappa and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674, 2021. https://doi.org/10.10 16/j.ijhy dene.2021.06.020.
  • Y. Liu, Z. Shao, T. Mori and S. P. Jiang, Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future. Materials Reports: Energy, 1(1), 100003, 2021. https://doi.org/10.1016/j.m atre.2020.11.002.
  • A. Bieberle and L.J. Gauckler, Ni-Based SOFC Anodes: Microstructure and Electrochemistry. International Journal of Materials Research, 92 (7), 796-802, 2001. https://doi.org/10.1515/ijmr-2001-0146.
  • Y. Zou, T. Lin, Y. Sun, Z. Chen, C. Guan, Y. Li, S. P. Jiang, N. Ai and K. Chen, Anodic polarization creates an electrocatalytically active Ni anode/electrolyte interface and mitigates the coarsening of Ni phase in SOFC. Electrochimica Acta, 391, 138912, 2021. https://doi.org/10.1016/j.electacta.2021.138912.
  • D. Cui, R. Kato, Y. Komatsu, A. Sciazko, B. Wang, Y. Xu, S. Wu, D. Chen, R. Xiao and N. Shikazono, Microstructure evolution of SOFC pure Ni anode with carbon deposition under polarization. Chemical Engineering Journal, 511, 161875, 2025. https://doi.org/10.1016/j.cej.2025.161875.
  • F. R. Bianchi, A. K. Padinjarethil, A. Hagen and B. Bosio, Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance. Electrochimica Acta, 460, 142589, 2023. https://doi.org/10.1016/j.electacta.2023.142589.
  • K. X. Lee, B. Hu, P. K. Dubey, M. R. Anisur, S. Belko, A. N. Aphale and P. Singh, High-entropy alloy anode for direct internal steam reforming of methane in SOFC. International Journal of Hydrogen Energy, 47 (90), 38372-38385, 2022. https://doi.org/10.1016/j.ijhydene.2022.09.018.
  • T. Kim, H. J. Kim, D. Go, J. W. Shin, B. C. Yang, G. Y. Cho, T. M. Gür and J. An, Reactive sputtered Ni-SDC cermet alloy anode for low-temperature solid oxide fuel cell. Journal of Alloys and Compounds, 924, 166332, 2022. https://doi.org/10.1016/j.jallcom.2022.166332.
  • N. H. Hadi, M. R. Somalu, A. A. Samat, A. Muchtar, N. A. Baharuddin and M. Anwar, A review on the preparation of anode materials and anode films for solid oxide fuel cell applications. International Journal of Energy Research, 45, 14357-14388, 2021. https://doi.org/10.1002/er.6763.
  • J. Geng, Q. Guo, J. Pan, B. Chi and J. Pu, Improvement of Fe addition on redox stability of Ni/YSZ composite anode for intermediate temperature solid oxide fuel cell. Renewable Energy, 240, 122236, 2025. https://doi.org/10.1016/j.renene.2024.122236.
  • N. Ahmed, S. Devi, M. A. Dar, S. K. M. Ibrahim, A. Sharma, N. Sharma, S. Paul and S. R. Ahamed, Anode material for solid oxide fuel cell: a review. Indian Journal of Physics, 98, 877-888, 2024. https://doi.org/10.1007/s12648-023-02860-3.
  • Q. Fu, C. Tian, L. Hun, X. Wang, Z. Li, Z. Liu and W. Wei, Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization. Energy, 289, 129997, 2024. https://doi.org/10.1016/j.energy.2023.129997.
  • G. Eroğlu ve Y. Z. Akgök, Dünyada ve Türkiye’de Nikel. Maden Tetkik Arama Genel Müdürlüğü Fizibilite Etütleri Daire Başkanlığı, 2018.
  • M. Islam and K. Sohag, Mineral import demand and wind energy deployment in the USA: Co-integration and counterfactual analysis approaches. Mineral Economics, 36(4), S697-S717, 2023. https://doi. org/10.1007/s13563- 023-00382-2.
  • A.D. Dalvi, W.G. Bacon and R.C. Osborne, The past and future of nickel latertites. PDAC 2004 International Convention, 7–10 Mart, 2004.
  • D. R. Qi, T. G. Lan, Q. Shu, Y. Feng and S. H. Zhou, Nickel enrichment during lateritization of ophiolitic ultramafic rocks: A case study from the Kelurahan Pondidrha laterite profile in Sulawesi, Indonesia. Ore Geology Reviews, 106140, 2024. https://doi.org/10.10 16/j.oregeorev.2024.106140.
  • M. Elias, Nickel laterite deposits-geological overview, resources and exploitation. Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 4, 205-220, 2002.
  • M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, Characteristic length of oxide-ıon conduction for prediction of active thickness in SOFC anode. ECS Transactions, 57(1), 2515, 2013. https://doi.org/10.11 49/05701.2515ecst.
  • G. Cai, Y. Zhang, H. Dai, S. He, L. Ge, H. Chen and L. Guo, Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell. Materials Letters, 195, 232-235, 2017. https://doi.org/10.101 6/j.ma tlet.2017.02.095.
  • H. Seo, M. Kishimoto, T. Nakagawa, H. Iwai and H. Yoshida, Mechanism of improved electrochemical performance of anode-supported solid oxide fuel cells by mesostructural modification of electrode–electrolyte interface. Journal of Power Sources, 506, 230107, 2021. https://doi.org/10.1016/j.jpowsour.2021.230107.
  • D. Yin, J. Wang, M. Ni, P. Liu, Z. Dong and D. Tang, Fabrication of Highly Transparent Y2O3 Ceramics with CaO as Sintering Aid. Materials, 14(2), 444, 2021. https://doi.org/10.3390/ma1402 0444.
  • Z. M. Zhang, J. H. Li, Y. N. Liang, Y. Gao and C. X. Li, Yb/Sc Co-doped ZrO2 electrolytes enabled by Al2O3 sintering aid: High conductivity and enhanced stability for solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, 139, 425-434, 2025. https://doi.org/10.1016/j.ijhydene.20 25.05.274.
  • Q. Liang, P. Tang, J. Zhou, J. Bai, D. Tian, X. Zhu, D. Zhou, N. Wang and W. Yan, Effect of MgO and Fe2O3 dual sintering aids on the microstructure and electrochemical performance of the solid state Gd0.2Ce0.8O2-δ electrolyte in intermediate-temperature solid oxide fuel cells. Frontiers in Chemistry, 10, 991922, 2022. https://doi.org/10.33 89/fchem.2022.991922.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Çiğdem Timurkutluk 0000-0002-8672-993X

Gülşah Germen Tutaş 0000-0002-7705-7465

Ahmet Alp Süneçli 0000-0001-9716-9846

Bora Timurkutluk 0000-0001-6916-7720

Erçin Demirboğa 0009-0003-2421-1451

Orhan Yılmaz 0009-0001-3369-9474

Nuray Demirel 0000-0003-1998-396X

Early Pub Date August 11, 2025
Publication Date October 15, 2025
Submission Date June 18, 2025
Acceptance Date July 22, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Timurkutluk, Ç., Germen Tutaş, G., Süneçli, A. A., … Timurkutluk, B. (2025). Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1261-1270. https://doi.org/10.28948/ngumuh.1722135
AMA Timurkutluk Ç, Germen Tutaş G, Süneçli AA, et al. Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı. NOHU J. Eng. Sci. October 2025;14(4):1261-1270. doi:10.28948/ngumuh.1722135
Chicago Timurkutluk, Çiğdem, Gülşah Germen Tutaş, Ahmet Alp Süneçli, Bora Timurkutluk, Erçin Demirboğa, Orhan Yılmaz, and Nuray Demirel. “Yerli Nikel Oksit Tozlarının Mikrotüp Katı Oksit Yakıt Pillerinde Kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1261-70. https://doi.org/10.28948/ngumuh.1722135.
EndNote Timurkutluk Ç, Germen Tutaş G, Süneçli AA, Timurkutluk B, Demirboğa E, Yılmaz O, Demirel N (October 1, 2025) Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1261–1270.
IEEE Ç. Timurkutluk, G. Germen Tutaş, A. A. Süneçli, B. Timurkutluk, E. Demirboğa, O. Yılmaz, and N. Demirel, “Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1261–1270, 2025, doi: 10.28948/ngumuh.1722135.
ISNAD Timurkutluk, Çiğdem et al. “Yerli Nikel Oksit Tozlarının Mikrotüp Katı Oksit Yakıt Pillerinde Kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1261-1270. https://doi.org/10.28948/ngumuh.1722135.
JAMA Timurkutluk Ç, Germen Tutaş G, Süneçli AA, Timurkutluk B, Demirboğa E, Yılmaz O, Demirel N. Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı. NOHU J. Eng. Sci. 2025;14:1261–1270.
MLA Timurkutluk, Çiğdem et al. “Yerli Nikel Oksit Tozlarının Mikrotüp Katı Oksit Yakıt Pillerinde Kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1261-70, doi:10.28948/ngumuh.1722135.
Vancouver Timurkutluk Ç, Germen Tutaş G, Süneçli AA, Timurkutluk B, Demirboğa E, Yılmaz O, et al. Yerli nikel oksit tozlarının mikrotüp katı oksit yakıt pillerinde kullanımı. NOHU J. Eng. Sci. 2025;14(4):1261-70.

download