Research Article
BibTex RIS Cite

Comparative study of commercial cathode catalysts in solid oxide fuel cells

Year 2025, Volume: 14 Issue: 4, 1271 - 1281, 15.10.2025

Abstract

Solid oxide fuel cells (SOFCs) are among the most promising next-generation energy conversion technologies, primarily due to the advantages conferred by high operating temperatures, such as enhanced reaction kinetics and facilitated system integration. However, the oxygen reduction reaction at the cathode is generally regarded as the rate-limiting step, owing to its complex multi-step mechanism and high activation energy requirements. In this context, the type, particle size, and distribution of catalyst powders used in the cathode functional layer are critical parameters that directly influence the final microstructure and, accordingly, the overall electrochemical performance. In this study, the applicability of six commercially available cathode catalyst powders, commonly used in SOFC applications, is systematically evaluated as the cathode component in anode-supported microtubular SOFCs. Cell fabrication is carried out using extrusion and dip-coating techniques, with only the cathode being varied to enable a reasonable comparison. The fabricated cells are characterized by scanning electron microscopy, and their electrochemical performance is evaluated. The highest maximum power density, 0.424 W/cm2, is achieved in the cell utilizing the (La0.8Sr0.2)0.98MnO3 catalyst. In contrast, the lowest peak power density of 0.296 W/cm2 is obtained from the cell prepared with La0.6Sr0.4FeO3.

References

  • M. Yu, Q. Feng, Z. Liu, P. Zhang, X. Zhu and S. Mu, Recent novel fabrication techniques for proton-conducting solid oxide fuel cells. Crystals, 14, 225, 2024. https://doi.org/10.3390/cryst14030225.
  •    J. Rehman, M.B. Hanif, M.Z. Khan, M. Ullah, I.A. Starostina, M.T. Muhammad and Z. Li, A Review of Proton-Conducting Electrolytes for Efficient Low-Temperature Solid Oxide Fuel Cells: Progress, Challenges, and Perspectives. Energy & Fuels, 38 22637-22665, 2024. https://doi.org/10.1021 /acs.energyfuels.4c03683.
  •    M. Liang, J. Kim, X. Xu, H. Sun, Y. Song, S. Jeon, T.H. Shin, Z. Shao and W. Jung, Electricity-to-ammonia interconversion in protonic ceramic cells: advances, challenges and perspectives. Energy & Environmental Science, 18, 3526-552, 2025. https://doi.org/10.10 39/D4EE06100D.
  •    B. Timurkutluk, C. Timurkutluk, M.D. Mat and Y Kaplan, A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 56, 1101-1121, 2016. https://doi.org/10.1016/j.rser.2015.12.034
  •    F.R. Bianchi, A.K. Padinjarethil, A. Hagen and B. Bosio, Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance. Electrochimica Acta, 460, 142589, 2023. https://doi.org/10.1016/j.electacta.2023.142589.
  •    Q. Xu, Z. Guo, L. Xia, Q. He, Z. Li, I.T. Bello, K. Zheng and Ni, A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Conversion and Management, 253, 115175, 2022. https://doi.org/10.1016/j.encon man.2021.115175.
  •    M. Singh, D. Zappa and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46, 27643-27674, 2021. https://doi.org/10.1016/ j.ijhydene.2021.06.020.
  •    S. Manishanma and A. Dutta, Synthesis and characterization of nickel doped LSM as possible cathode materials for LT-SOFC application. Materials Chemistry and Physics, 297, 127438, 2023. https://doi.org/10.1016/j.matchemphys.2023.127438.
  •    H.-W. Kim, H.J. Kim, K.S. Yun, D.-H. Peck, J. Moon and J.H. Yu, Electrochemical characteristics of limiting current sensors with LSM-YSZ and LSM-CGO-YSZ composite electrodes. Ceramics International, 49, 21521-21529, 2023. https://doi.org/10.1016/j. ceramint.2023.03.285.
  • E. Lee, H. Jeong, T.H. Shin and J.-h. Myung, Determination of the rate-determining step of the oxygen reduction reaction of La0. 8Sr0. 2MnO3 (LSM)-8mol% yttria-stabilized zirconia (YSZ): Composition and microstructure. Ceramics International, 47, 1792-1797, 2021. https://doi.org /10.1016/j.ceramint.2020.09.005.
  • P. Vinchhi, M. Khandla, K. Chaudhary and R. Pati, Recent advances on electrolyte materials for SOFC: A review. Inorganic Chemistry Communications, 152, 110724, 2023. https://doi.org/10.1016/j.inoc he.2023.110724.
  • Y. Yang, Y. Zhang and M. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Separation and Purification Technology, 298, 121627, 2022. https://doi.org/10.1016/j.seppur.2022.121627.
  • S. Vafaeenezhad, A.R. Hanifi, M.A. Laguna-Bercero, T.H. Etsell and P. Sarkar, Microstructure and long-term stability of Ni–YSZ anode supported fuel cells: a review. Materials Futures, 1, 042101, 2022. https://doi.org/10.1088/2752-5724/ac88e7.
  • H. Seo, M. Kishimoto, T. Nakagawa, H. Iwai and H. Yoshida, Mechanism of improved electrochemical performance of anode-supported solid oxide fuel cells by mesostructural modification of electrode–electrolyte interface. Journal of Power Sources, 506, 230107, 2021. https://doi.org/10.1016/j.jpowsour.2021.230107.
  • G. Cai, Y. Zhang, H. Dai, S. He, L. Ge, H. Chen and L. Guo, Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell. Materials Letters, 195, 232-235, 2017. https://doi.org/10.1016/j.matlet.2017.02.095.
  • M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, Characteristic length of oxide-ion conduction for prediction of active thickness in SOFC anode. ECS Transactions, 57, 2515, 2013. https://doi .org/10.1149/05701.2515ecst.
  • K. Yuan, Y. Ji and J. Chung, Physics-based modeling of a low-temperature solid oxide fuel cell with consideration of microstructure and interfacial effects. Journal of Power Sources, 194, 908-919, 2009. https://doi.org/10.1016/j.jpowsour.2009.05.045.
  • S. Sakamoto, H. Taira and H. Takagi, Effective electrode reaction area of cofired type planar SOFC. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 64, 609-613, 1996. https://doi.org/10.5796/kogy obutsurikagaku.64.609.
  • L. Bi, E. Fabbri and E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 16, 37-40, 2012. https://doi.org/10.1016/j.elecom.2011.12.023.
  • S. Chen, D. Gu, Y. Zheng, H. Chen and L. Guo, Enhanced performance of NiO–3YSZ planar anode-supported SOFC with an anode functional layer. Journal of Materials Science, 55, 88-98, 2020. https://doi.org/10.1007/s10853-019-04007-4.
  • A.A. Solovyev, A.M. Lebedynskiy, A.V. Shipilova, I.V. Ionov, E.A. Smolyanskiy, A.L. Lauk and G.E. Remnev, Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance. International Journal of Hydrogen Energy, 44, 30636-30643, 2019. https://doi.org/10.1016/j.ijhydene.2018.11.193.
  • K. Chen, X. Chen, Z. Lü, N. Ai, X. Huang and W. Su, Performance of an anode-supported SOFC with anode functional layers. Electrochimica Acta, 53, 7825-7830, 2008. https://doi.org/10.1016/j.electacta.2008.05.063.
  • M.D. Gross, J.M. Vohs and R.J. Gorte, An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ. Journal of The Electrochemical Society, 154, B694, 2007. https://doi.org/10.1149/1.2736647.
  • X. Chen, J. Lin, L. Sun, T. Liu, J. Wu, Z. Sheng and Y. Wang, Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer. Electrochimica Acta, 298, 112-120, 2019. https://doi.org/10.1016/j.electacta.2018.12.078.
  • A.A.E. Hassan, N.H. Menzler, G. Blass, M.E. Ali, H.P. Buchkremer and D. Stöver, Development of an Optimized Anode Functional Layer for Solid Oxide Fuel Cell Applications. Advanced Engineering Materials, 4, 125-129, 2002. https://doi.org/1 0.1002/1527-648(200203)4:3<125::AID-ADEM125> 3.0.CO;2-D.
  • N. Ai, Z. Lü, J. Tang, K. Chen, X. Huang and W. Su, Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer. Journal of Power Sources, 185, 153-158, 2008. https://doi.org/10.1016/j.jpowsour. 2008.06.030.
  • K.T. Lee, N.J. Vito, H.S. Yoon and E.D. Wachsman, Effect of Ni-Gd0.1Ce0.9O1.95 Anode Functional Layer Composition on Performance of Lower Temperature SOFCs. Journal of The Electrochemical Society, 159, F187, 2012.https://doi.org/10.114 9/2.009207jes.
  • A. de Pádua Lima Fernandes, E.M. Garcia, R.M. de Almeida, H.A. Taroco, E.P.C. Silva, R.Z. Domingues and T. Matencio, Influence of cathode functional layer composition on electrochemical performance of solid oxide fuel cells. Journal of Solid State Electrochemistry, 20, 2575-2580, 2016. https://doi.org/10.1007/s10008-016-3241-4.
  • A. Rolle, H.A.A. Mohamed, D. Huo, E. Capoen, O. Mentré, R.-N. Vannier, S. Daviero-Minaud and B.A. Boukamp, Ca3Co4O9+δ, a growing potential SOFC cathode material: Impact of the layer composition and thickness on the electrochemical properties. Solid State Ionics, 294, 21-30, 2016. https://doi.org/10.1016/ j.ssi.2016.06.001.
  • B. Kenney and K. Karan, Engineering of microstructure and design of a planar porous composite SOFC cathode: A numerical analysis. Solid State Ionics, 178, 297-306, 2007. https://doi.org/10.1016/j. ssi.2006.12.009.
  • M. Asmare, Numerical investigation of the effect of functional layer thickness on solid oxide fuel cell performance. International Journal of Sustainable Engineering, 17, 62-71, 2024. https://doi.org/10.1080/19397038.2024.2303671.
  • S.A. Muhammed Ali, M. Anwar, L.S. Mahmud, N.S. Kalib, A. Muchtar and M.R. Somalu, Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode. Journal of Solid State Electrochemistry, 23, 1155-1164, 2019. https://doi.org/10.1007/s10008-019-04208-6.
  • N. Hart, N. Brandon, M. Day and J. Shemilt, Functionally graded cathodes for solid oxide fuel cells. Journal of Materials Science, 36, 1077-1085, 2001. https://doi.org/10.1023/A:1004857104328.
  • S. Zha, Y. Zhang and M. Liu, Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs. Solid State Ionics, 176, 25-31, 2005. https://doi.org/10.1016/j.ssi.2004.07.010.
  • X. Xu, C. Xia, G. Xiao and D. Peng, Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ionics, 176, 1513-1520, 2005.https://doi.org/10.1016/j .ssi.2005.04.011.
  • S. Osman, K. Ahmed and M. Ahmed, Performance of Two-Dimensional Functionally Graded Anode Supported Solid-Oxide Fuel Cells. Journal of Energy Resources Technology, 144, 070911, 2022. https://doi.org/10.1115/1.4053675.
  • Z. Yan, A. He, S. Hara and N. Shikazono, Design and optimization of functionally graded electrodes for solid oxide fuel cells (SOFCs) by mesoscale modeling. International Journal of Hydrogen Energy, 47, 16610-16625, 2022. https://doi.org/10.1016/j. ijhydene.2022.03.165.
  • S. Osman, K. Ahmed, M. Nemattalla, S. Ookawara and M. Ahmed, Performance and thermal stresses in functionally graded anode-supported honeycomb solid-oxide fuel cells. International Journal of Hydrogen Energy, 46, 33010-33027, 2021. https://doi.org/10 .1016/j.ijhydene.2021.07.131.
  • M. Ni, M.K.H. Leung and D.Y.C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources, 168, 369-378, 2007. https://doi.org/10.1016 /j.jpowsour.2007.03.005.
  • J.H. Nam and D.H. Jeon, A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51, 3446-3460, 2006. https://doi.org/10.1016/ j.electacta.2005.09.041.
  • A. Ali, X. Wen, K. Nandakumar, J. Luo and K.T. Chuang, Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes. Journal of Power Sources, 185, 961-966, 2008. https://doi.org/10.1016/j.jpowsour.2008.09.032.
  • H.J. Cho and G.M. Choi, Effect of milling methods on performance of Ni–Y2O3-stabilized ZrO2 anode for solid oxide fuel cell. Journal of Power Sources, 176, 96-101, 2008. https://doi.org/10.1016/j.jpowsour .2007.09.118.
  • P. Fu, M. Yan, M. Zeng and Q. Wang, Sintering process simulation of a solid oxide fuel cell anode and its predicted thermophysical properties. Applied Thermal Engineering, 125, 209-219, 2017. https://doi.org/10.1016/j.applthermaleng.2017.06.061.
  • A.R. Hanifi, M.A. Laguna-Bercero, N.K. Sandhu, T.H. Etsell and P. Sarkar, Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ. Scientific Reports, 6, 27359, 2016. https://doi.org/10.1038/srep27359.
  • M. Irshad, M. Rafique, A.N. Tabish, A. Ghaffar, A. Shakeel, K. Siraj, Q.u. Ain, R. Raza, M.A. Assiri and M. Imran, Influence of Sintering Temperature on the Structural, Morphological, and Electrochemical Properties of NiO-YSZ Anode Synthesized by the Autocombustion Route. Metals, 12, 219, 2022. https://doi.org/10.3390/met12020219.
  • B. Völker and R.M. McMeeking, Impact of particle size ratio and volume fraction on effective material parameters and performance in solid oxide fuel cell electrodes. Journal of Power Sources, 215, 199-215, 2012. https://doi.org/10.1016/j.jpowsour.2012.05.014.
  • L. Holzer, B. Münch, B. Iwanschitz, M. Cantoni, T. Hocker and T. Graule, Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells. Journal of Power Sources, 196, 7076-7089, 2011. https://doi.org/10.1016/j.jpowsour.2010.08.006.
  • J.Y. Park, J.M. Im, B. Ryu, S.-W. Baek and J.H. Kim, Effect of particle sizes on the electrical conductivity characteristics of La0.8Sr0.2MnO3-δ (LSM) cathodes for solid oxide fuel cell (SOFC). Journal of the Korean Ceramic Society, 62, 515-525, 2025. https://doi.org/10.1007/s43207-025-00495-0.
  • Y.-M. Kim, S.-W. Baek, J. Bae and Y.-S. Yoo, Effect of calcination temperature on electrochemical properties of cathodes for solid oxide fuel cells. Solid State Ionics, 192, 595-598, 2011. https://doi.org/10.1016/j.ssi.2010.09.014.
  • L.A. Omeiza, K.A. Kuterbekov, A. Kabyshev, K. Bekmyrza, M. Kubenova, S. Afroze, S.A. Bakar and A.K. Azad, Limitations and trends on cobalt-free cathode materials development for intermediate-temperature solid oxide fuel cell- an updated technical review. Emergent Materials, 7, 2189-2204, 2024. https://doi.org/10.1007/s42247-024-00737-7.
  • A. Ndubuisi, S. Abouali, K. Singh and V. Thangadurai, Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes, Journal of Materials Chemistry A. 10, 2196-2227, 2022. https://doi.org/10.1039/D1TA08475E.
  • Z. Zhang, Y. Zhu, Y. Zhong, W. Zhou and Z. Shao, Anion Doping: A New Strategy for Developing High-Performance Perovskite-Type Cathode Materials of Solid Oxide Fuel Cells, Advanced Energy Materials. 7, 1700242, 2017. https://doi.org/10.1002/aenm.20 1700242.
  • Z. Shomali, P. Alizadeh and H. Abdoli, The effect of glass sealing stabilization on LSM–YSZ cathode poisoning and oxygen reduction reaction processes in solid oxide fuel cell. Journal of the American Ceramic Society, 108, e20206, 2025. https://doi.org/10.1 111/jace.20206.
  • H. Türk, X.Q. Tran, P. König, A. Hammud, V. Vibhu, F.-P. Schmidt, D. Berger, S. Selve, V. Roddatis, D. Abou-Ras, F. Girgsdies, Y.-T. Chan, T. Götsch, H. Ali, I.C. Vinke, L.G.J. de Haart, M. Lehmann, A. Knop-Gericke, K. Reuter, R.-A. Eichel, C. Scheurer and T. Lunkenbein, Boon and Bane of Local Solid State Chemistry on the Performance of LSM-Based Solid Oxide Electrolysis Cells. Advanced Energy Materials, 15, 2405599, 2025. https://doi.org/10.100 2/aenm.202405599.
  • M. Charalampakis, L. Zouridi, I. Garagounis, A. Vourros, G.E. Marnellos and V. Binas, Inkjet-Printed LSM-YSZ Thin Films for Enhanced Oxygen Electrodes in Solid Oxide Fuel Cells. Energy & Fuels, 38, 14621-14631, 2024. https://doi.org/10.1021 /acs.energyfuels.4c00673.
  • N. Caillol, M. Pijolat and E. Siebert, Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Applied Surface Science, 253, 4641-4648, 2007. https://doi.org/10.1016/j.apsusc.2006.10.019.
  • Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold and F. Tietz, Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs. Journal of Power Sources, 141, 216-226, 2025. https://doi.org/10.1016/j.jpowsour.2004.09.016.

Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi

Year 2025, Volume: 14 Issue: 4, 1271 - 1281, 15.10.2025

Abstract

Katı oksit yakıt pili (KOYP), yüksek çalışma sıcaklıklarının sağladığı reaksiyon kinetiği ve sistem entegrasyonu avantajları nedeniyle yeni nesil enerji dönüşüm teknolojileri arasında öne çıkmaktadır. Fakat KOYP katotta gerçekleşen oksijen indirgenme reaksiyonları, çok kademeli mekanizmalara ve yüksek aktivasyon enerjilerine ihtiyaç duyması nedeniyle genellikle sistemin sınırlayıcı basamağı olarak dikkat çekmektedir. Bu bağlamda, katot işlevsel tabaka (KİT) bileşeni olarak kullanılan katalizör tozlarının türü, partikül boyutu ve dağılımı; nihai gözeneklilik, reaksiyon bölgeleri ve elektrokimyasal etkinlik açısından belirleyici olmaktadır. Bu çalışmada, anot destekli mikrotüp KOYP hücrelerinde yaygın olarak kullanılan altı farklı ticari katot katalizörünün KİT bileşeni olarak uygulanabilirliği değerlendirilmiştir. Hücre üretiminde ekstrüzyon ve daldırma kaplama yöntemleri kullanılmış, yalnızca KİT bileşeni değiştirilerek karşılaştırmalı analiz yapılmıştır. Hazırlanan hücreler, mikroyapısal olarak taramalı elektron mikroskobu (SEM) ile incelenmiş ve elektrokimyasal performans testleri gerçekleştirilmiştir. En yüksek maksimum güç yoğunluğu olan 0.424 W/cm2, (La0.8Sr0.2)0.98MnO3 katalizörü kullanılan hücrede ölçülmüştür. En düşük tepe güç yoğunluğu ise La0.6Sr0.4FeO3 ile hazırlanan hücreden 0.296 W/cm2 olarak elde edilmiştir.

References

  • M. Yu, Q. Feng, Z. Liu, P. Zhang, X. Zhu and S. Mu, Recent novel fabrication techniques for proton-conducting solid oxide fuel cells. Crystals, 14, 225, 2024. https://doi.org/10.3390/cryst14030225.
  •    J. Rehman, M.B. Hanif, M.Z. Khan, M. Ullah, I.A. Starostina, M.T. Muhammad and Z. Li, A Review of Proton-Conducting Electrolytes for Efficient Low-Temperature Solid Oxide Fuel Cells: Progress, Challenges, and Perspectives. Energy & Fuels, 38 22637-22665, 2024. https://doi.org/10.1021 /acs.energyfuels.4c03683.
  •    M. Liang, J. Kim, X. Xu, H. Sun, Y. Song, S. Jeon, T.H. Shin, Z. Shao and W. Jung, Electricity-to-ammonia interconversion in protonic ceramic cells: advances, challenges and perspectives. Energy & Environmental Science, 18, 3526-552, 2025. https://doi.org/10.10 39/D4EE06100D.
  •    B. Timurkutluk, C. Timurkutluk, M.D. Mat and Y Kaplan, A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 56, 1101-1121, 2016. https://doi.org/10.1016/j.rser.2015.12.034
  •    F.R. Bianchi, A.K. Padinjarethil, A. Hagen and B. Bosio, Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance. Electrochimica Acta, 460, 142589, 2023. https://doi.org/10.1016/j.electacta.2023.142589.
  •    Q. Xu, Z. Guo, L. Xia, Q. He, Z. Li, I.T. Bello, K. Zheng and Ni, A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Conversion and Management, 253, 115175, 2022. https://doi.org/10.1016/j.encon man.2021.115175.
  •    M. Singh, D. Zappa and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46, 27643-27674, 2021. https://doi.org/10.1016/ j.ijhydene.2021.06.020.
  •    S. Manishanma and A. Dutta, Synthesis and characterization of nickel doped LSM as possible cathode materials for LT-SOFC application. Materials Chemistry and Physics, 297, 127438, 2023. https://doi.org/10.1016/j.matchemphys.2023.127438.
  •    H.-W. Kim, H.J. Kim, K.S. Yun, D.-H. Peck, J. Moon and J.H. Yu, Electrochemical characteristics of limiting current sensors with LSM-YSZ and LSM-CGO-YSZ composite electrodes. Ceramics International, 49, 21521-21529, 2023. https://doi.org/10.1016/j. ceramint.2023.03.285.
  • E. Lee, H. Jeong, T.H. Shin and J.-h. Myung, Determination of the rate-determining step of the oxygen reduction reaction of La0. 8Sr0. 2MnO3 (LSM)-8mol% yttria-stabilized zirconia (YSZ): Composition and microstructure. Ceramics International, 47, 1792-1797, 2021. https://doi.org /10.1016/j.ceramint.2020.09.005.
  • P. Vinchhi, M. Khandla, K. Chaudhary and R. Pati, Recent advances on electrolyte materials for SOFC: A review. Inorganic Chemistry Communications, 152, 110724, 2023. https://doi.org/10.1016/j.inoc he.2023.110724.
  • Y. Yang, Y. Zhang and M. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Separation and Purification Technology, 298, 121627, 2022. https://doi.org/10.1016/j.seppur.2022.121627.
  • S. Vafaeenezhad, A.R. Hanifi, M.A. Laguna-Bercero, T.H. Etsell and P. Sarkar, Microstructure and long-term stability of Ni–YSZ anode supported fuel cells: a review. Materials Futures, 1, 042101, 2022. https://doi.org/10.1088/2752-5724/ac88e7.
  • H. Seo, M. Kishimoto, T. Nakagawa, H. Iwai and H. Yoshida, Mechanism of improved electrochemical performance of anode-supported solid oxide fuel cells by mesostructural modification of electrode–electrolyte interface. Journal of Power Sources, 506, 230107, 2021. https://doi.org/10.1016/j.jpowsour.2021.230107.
  • G. Cai, Y. Zhang, H. Dai, S. He, L. Ge, H. Chen and L. Guo, Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell. Materials Letters, 195, 232-235, 2017. https://doi.org/10.1016/j.matlet.2017.02.095.
  • M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, Characteristic length of oxide-ion conduction for prediction of active thickness in SOFC anode. ECS Transactions, 57, 2515, 2013. https://doi .org/10.1149/05701.2515ecst.
  • K. Yuan, Y. Ji and J. Chung, Physics-based modeling of a low-temperature solid oxide fuel cell with consideration of microstructure and interfacial effects. Journal of Power Sources, 194, 908-919, 2009. https://doi.org/10.1016/j.jpowsour.2009.05.045.
  • S. Sakamoto, H. Taira and H. Takagi, Effective electrode reaction area of cofired type planar SOFC. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 64, 609-613, 1996. https://doi.org/10.5796/kogy obutsurikagaku.64.609.
  • L. Bi, E. Fabbri and E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 16, 37-40, 2012. https://doi.org/10.1016/j.elecom.2011.12.023.
  • S. Chen, D. Gu, Y. Zheng, H. Chen and L. Guo, Enhanced performance of NiO–3YSZ planar anode-supported SOFC with an anode functional layer. Journal of Materials Science, 55, 88-98, 2020. https://doi.org/10.1007/s10853-019-04007-4.
  • A.A. Solovyev, A.M. Lebedynskiy, A.V. Shipilova, I.V. Ionov, E.A. Smolyanskiy, A.L. Lauk and G.E. Remnev, Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance. International Journal of Hydrogen Energy, 44, 30636-30643, 2019. https://doi.org/10.1016/j.ijhydene.2018.11.193.
  • K. Chen, X. Chen, Z. Lü, N. Ai, X. Huang and W. Su, Performance of an anode-supported SOFC with anode functional layers. Electrochimica Acta, 53, 7825-7830, 2008. https://doi.org/10.1016/j.electacta.2008.05.063.
  • M.D. Gross, J.M. Vohs and R.J. Gorte, An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ. Journal of The Electrochemical Society, 154, B694, 2007. https://doi.org/10.1149/1.2736647.
  • X. Chen, J. Lin, L. Sun, T. Liu, J. Wu, Z. Sheng and Y. Wang, Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer. Electrochimica Acta, 298, 112-120, 2019. https://doi.org/10.1016/j.electacta.2018.12.078.
  • A.A.E. Hassan, N.H. Menzler, G. Blass, M.E. Ali, H.P. Buchkremer and D. Stöver, Development of an Optimized Anode Functional Layer for Solid Oxide Fuel Cell Applications. Advanced Engineering Materials, 4, 125-129, 2002. https://doi.org/1 0.1002/1527-648(200203)4:3<125::AID-ADEM125> 3.0.CO;2-D.
  • N. Ai, Z. Lü, J. Tang, K. Chen, X. Huang and W. Su, Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer. Journal of Power Sources, 185, 153-158, 2008. https://doi.org/10.1016/j.jpowsour. 2008.06.030.
  • K.T. Lee, N.J. Vito, H.S. Yoon and E.D. Wachsman, Effect of Ni-Gd0.1Ce0.9O1.95 Anode Functional Layer Composition on Performance of Lower Temperature SOFCs. Journal of The Electrochemical Society, 159, F187, 2012.https://doi.org/10.114 9/2.009207jes.
  • A. de Pádua Lima Fernandes, E.M. Garcia, R.M. de Almeida, H.A. Taroco, E.P.C. Silva, R.Z. Domingues and T. Matencio, Influence of cathode functional layer composition on electrochemical performance of solid oxide fuel cells. Journal of Solid State Electrochemistry, 20, 2575-2580, 2016. https://doi.org/10.1007/s10008-016-3241-4.
  • A. Rolle, H.A.A. Mohamed, D. Huo, E. Capoen, O. Mentré, R.-N. Vannier, S. Daviero-Minaud and B.A. Boukamp, Ca3Co4O9+δ, a growing potential SOFC cathode material: Impact of the layer composition and thickness on the electrochemical properties. Solid State Ionics, 294, 21-30, 2016. https://doi.org/10.1016/ j.ssi.2016.06.001.
  • B. Kenney and K. Karan, Engineering of microstructure and design of a planar porous composite SOFC cathode: A numerical analysis. Solid State Ionics, 178, 297-306, 2007. https://doi.org/10.1016/j. ssi.2006.12.009.
  • M. Asmare, Numerical investigation of the effect of functional layer thickness on solid oxide fuel cell performance. International Journal of Sustainable Engineering, 17, 62-71, 2024. https://doi.org/10.1080/19397038.2024.2303671.
  • S.A. Muhammed Ali, M. Anwar, L.S. Mahmud, N.S. Kalib, A. Muchtar and M.R. Somalu, Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode. Journal of Solid State Electrochemistry, 23, 1155-1164, 2019. https://doi.org/10.1007/s10008-019-04208-6.
  • N. Hart, N. Brandon, M. Day and J. Shemilt, Functionally graded cathodes for solid oxide fuel cells. Journal of Materials Science, 36, 1077-1085, 2001. https://doi.org/10.1023/A:1004857104328.
  • S. Zha, Y. Zhang and M. Liu, Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs. Solid State Ionics, 176, 25-31, 2005. https://doi.org/10.1016/j.ssi.2004.07.010.
  • X. Xu, C. Xia, G. Xiao and D. Peng, Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ionics, 176, 1513-1520, 2005.https://doi.org/10.1016/j .ssi.2005.04.011.
  • S. Osman, K. Ahmed and M. Ahmed, Performance of Two-Dimensional Functionally Graded Anode Supported Solid-Oxide Fuel Cells. Journal of Energy Resources Technology, 144, 070911, 2022. https://doi.org/10.1115/1.4053675.
  • Z. Yan, A. He, S. Hara and N. Shikazono, Design and optimization of functionally graded electrodes for solid oxide fuel cells (SOFCs) by mesoscale modeling. International Journal of Hydrogen Energy, 47, 16610-16625, 2022. https://doi.org/10.1016/j. ijhydene.2022.03.165.
  • S. Osman, K. Ahmed, M. Nemattalla, S. Ookawara and M. Ahmed, Performance and thermal stresses in functionally graded anode-supported honeycomb solid-oxide fuel cells. International Journal of Hydrogen Energy, 46, 33010-33027, 2021. https://doi.org/10 .1016/j.ijhydene.2021.07.131.
  • M. Ni, M.K.H. Leung and D.Y.C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources, 168, 369-378, 2007. https://doi.org/10.1016 /j.jpowsour.2007.03.005.
  • J.H. Nam and D.H. Jeon, A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51, 3446-3460, 2006. https://doi.org/10.1016/ j.electacta.2005.09.041.
  • A. Ali, X. Wen, K. Nandakumar, J. Luo and K.T. Chuang, Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes. Journal of Power Sources, 185, 961-966, 2008. https://doi.org/10.1016/j.jpowsour.2008.09.032.
  • H.J. Cho and G.M. Choi, Effect of milling methods on performance of Ni–Y2O3-stabilized ZrO2 anode for solid oxide fuel cell. Journal of Power Sources, 176, 96-101, 2008. https://doi.org/10.1016/j.jpowsour .2007.09.118.
  • P. Fu, M. Yan, M. Zeng and Q. Wang, Sintering process simulation of a solid oxide fuel cell anode and its predicted thermophysical properties. Applied Thermal Engineering, 125, 209-219, 2017. https://doi.org/10.1016/j.applthermaleng.2017.06.061.
  • A.R. Hanifi, M.A. Laguna-Bercero, N.K. Sandhu, T.H. Etsell and P. Sarkar, Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ. Scientific Reports, 6, 27359, 2016. https://doi.org/10.1038/srep27359.
  • M. Irshad, M. Rafique, A.N. Tabish, A. Ghaffar, A. Shakeel, K. Siraj, Q.u. Ain, R. Raza, M.A. Assiri and M. Imran, Influence of Sintering Temperature on the Structural, Morphological, and Electrochemical Properties of NiO-YSZ Anode Synthesized by the Autocombustion Route. Metals, 12, 219, 2022. https://doi.org/10.3390/met12020219.
  • B. Völker and R.M. McMeeking, Impact of particle size ratio and volume fraction on effective material parameters and performance in solid oxide fuel cell electrodes. Journal of Power Sources, 215, 199-215, 2012. https://doi.org/10.1016/j.jpowsour.2012.05.014.
  • L. Holzer, B. Münch, B. Iwanschitz, M. Cantoni, T. Hocker and T. Graule, Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells. Journal of Power Sources, 196, 7076-7089, 2011. https://doi.org/10.1016/j.jpowsour.2010.08.006.
  • J.Y. Park, J.M. Im, B. Ryu, S.-W. Baek and J.H. Kim, Effect of particle sizes on the electrical conductivity characteristics of La0.8Sr0.2MnO3-δ (LSM) cathodes for solid oxide fuel cell (SOFC). Journal of the Korean Ceramic Society, 62, 515-525, 2025. https://doi.org/10.1007/s43207-025-00495-0.
  • Y.-M. Kim, S.-W. Baek, J. Bae and Y.-S. Yoo, Effect of calcination temperature on electrochemical properties of cathodes for solid oxide fuel cells. Solid State Ionics, 192, 595-598, 2011. https://doi.org/10.1016/j.ssi.2010.09.014.
  • L.A. Omeiza, K.A. Kuterbekov, A. Kabyshev, K. Bekmyrza, M. Kubenova, S. Afroze, S.A. Bakar and A.K. Azad, Limitations and trends on cobalt-free cathode materials development for intermediate-temperature solid oxide fuel cell- an updated technical review. Emergent Materials, 7, 2189-2204, 2024. https://doi.org/10.1007/s42247-024-00737-7.
  • A. Ndubuisi, S. Abouali, K. Singh and V. Thangadurai, Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes, Journal of Materials Chemistry A. 10, 2196-2227, 2022. https://doi.org/10.1039/D1TA08475E.
  • Z. Zhang, Y. Zhu, Y. Zhong, W. Zhou and Z. Shao, Anion Doping: A New Strategy for Developing High-Performance Perovskite-Type Cathode Materials of Solid Oxide Fuel Cells, Advanced Energy Materials. 7, 1700242, 2017. https://doi.org/10.1002/aenm.20 1700242.
  • Z. Shomali, P. Alizadeh and H. Abdoli, The effect of glass sealing stabilization on LSM–YSZ cathode poisoning and oxygen reduction reaction processes in solid oxide fuel cell. Journal of the American Ceramic Society, 108, e20206, 2025. https://doi.org/10.1 111/jace.20206.
  • H. Türk, X.Q. Tran, P. König, A. Hammud, V. Vibhu, F.-P. Schmidt, D. Berger, S. Selve, V. Roddatis, D. Abou-Ras, F. Girgsdies, Y.-T. Chan, T. Götsch, H. Ali, I.C. Vinke, L.G.J. de Haart, M. Lehmann, A. Knop-Gericke, K. Reuter, R.-A. Eichel, C. Scheurer and T. Lunkenbein, Boon and Bane of Local Solid State Chemistry on the Performance of LSM-Based Solid Oxide Electrolysis Cells. Advanced Energy Materials, 15, 2405599, 2025. https://doi.org/10.100 2/aenm.202405599.
  • M. Charalampakis, L. Zouridi, I. Garagounis, A. Vourros, G.E. Marnellos and V. Binas, Inkjet-Printed LSM-YSZ Thin Films for Enhanced Oxygen Electrodes in Solid Oxide Fuel Cells. Energy & Fuels, 38, 14621-14631, 2024. https://doi.org/10.1021 /acs.energyfuels.4c00673.
  • N. Caillol, M. Pijolat and E. Siebert, Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Applied Surface Science, 253, 4641-4648, 2007. https://doi.org/10.1016/j.apsusc.2006.10.019.
  • Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold and F. Tietz, Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs. Journal of Power Sources, 141, 216-226, 2025. https://doi.org/10.1016/j.jpowsour.2004.09.016.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Çiğdem Timurkutluk 0000-0002-8672-993X

Early Pub Date August 11, 2025
Publication Date October 15, 2025
Submission Date June 24, 2025
Acceptance Date July 22, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Timurkutluk, Ç. (2025). Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1271-1281. https://doi.org/10.28948/ngumuh.1725949
AMA Timurkutluk Ç. Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi. NOHU J. Eng. Sci. October 2025;14(4):1271-1281. doi:10.28948/ngumuh.1725949
Chicago Timurkutluk, Çiğdem. “Katı Oksit Yakıt Pillerinde Ticari Katot Katalizörlerinin Karşılaştırmalı Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1271-81. https://doi.org/10.28948/ngumuh.1725949.
EndNote Timurkutluk Ç (October 1, 2025) Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1271–1281.
IEEE Ç. Timurkutluk, “Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1271–1281, 2025, doi: 10.28948/ngumuh.1725949.
ISNAD Timurkutluk, Çiğdem. “Katı Oksit Yakıt Pillerinde Ticari Katot Katalizörlerinin Karşılaştırmalı Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1271-1281. https://doi.org/10.28948/ngumuh.1725949.
JAMA Timurkutluk Ç. Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi. NOHU J. Eng. Sci. 2025;14:1271–1281.
MLA Timurkutluk, Çiğdem. “Katı Oksit Yakıt Pillerinde Ticari Katot Katalizörlerinin Karşılaştırmalı Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1271-8, doi:10.28948/ngumuh.1725949.
Vancouver Timurkutluk Ç. Katı oksit yakıt pillerinde ticari katot katalizörlerinin karşılaştırmalı analizi. NOHU J. Eng. Sci. 2025;14(4):1271-8.

download