Research Article
BibTex RIS Cite

Ergimiş tuz aşındırmasıyla sentezlenen Klor-Termine MXenelerde elektrolit-bağımlı lityum interkalasyonu

Year 2025, Volume: 14 Issue: 4, 1339 - 1351, 15.10.2025

Abstract

MXeneler, geniş uygulama alanlarına sahip iki boyutlu malzemelerdir. Bu malzemelerin elektrokimyasal özellikleri, yüzeylerindeki sonlanma grupları (fonksiyonel gruplar) tarafından büyük ölçüde belirlenir. Geleneksel olarak, MXene sentezinde hidroflorik asit (HF) kullanılır ve bu yöntemle yüzeyde genellikle-O, -F ve -OH gibi sonlanma grupları oluşur. Ancak bu gruplar, MXene'nin iletkenliğini, kararlılığını, elektrokimyasal davranışını ve kimyasal reaktivitesini sınırlayabilir. Bu çalışmada, geleneksel HF-aşındırma metodu yerine kontrollü klor terminasyonu sağlayan ZnCl₂ kullanılarak ergimiş tuz aşındırma yöntemiyle çok katmanlı Ti₃C₂Cl₂ MXeneler sentezlenmiştir. Klor-terminasyonlu bu MXenelerin (MS-Ti₃C₂Cl₂) lityum-iyon interkalasyon davranışı, DMSO, PC ve ACN organik elektrolitlerinde üç elektrotlu Swagelok hücre düzeneği kullanılarak sistematik olarak incelenmiştir. Elektrokimyasal ölçümler, elektrolit bileşiminin interkalasyon dinamiği üzerinde belirleyici bir etkiye sahip olduğunu ortaya koymuştur. PC elektroliti, tam desolvasyon yoluyla psödokapasitif Li⁺ depolanmasını sağlarken, DMSO yüksek Coulomb verimliliği (~%100) ve karmaşık yük depolama kinetiği sergilemiştir. Buna karşılık, ACN'de solvatlı Li⁺ iyonlarının ko-interkalasyonu performans düşüşüne yol açmıştır. Kinetik analiz, b-değeri kantifikasyonu kullanılarak gerçekleştirilmiş ve DMSO için difüzyon-kontrollü davranış (b = 0,663), ACN için ise yüzey-dominant kapasitif davranış (b=0,884) gözlemlenmiştir. Bu bulgular, yüksek performanslı enerji depolama uygulamaları için MXene-tabanlı elektrotların optimizasyonunda terminasyon kimyası ve çözgen seçiminin önemini vurgulamaktadır.

References

  • T. Hu, Y. Chen, H. Liu, L. Liu, C. Dai, and Y. Han, Enhancing the diffusion of lithium ions to propel sulfur redox for lithium-sulfur batteries. Next Energy, 6100212, 2024. https://doi.org/10.1016/j.nxener.2024.100212
  •    K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, V. Nicolosi, and Y. Xu, 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater., 30, 2000842, 2020.
  •    J. Nan, X. Guo, J. Xiao, X. Li, W. Chen, W. Wu, H. Liu, Y. Wang, M. Wu, and G. Wang, Nanoengineering of 2D MXene-Based Materials for Energy Storage Application. Small, 17, 1902085, 2021. https://doi.org/10.1002/smll.201902085
  •    .H. Wang and X. Wu, High capacitance of dipicolinic acid-intercalated MXene in neutral water-based electrolyte. Chemical Engineering Journal, 399, 125850, 2020. https://doi.org/10.1016/j.cej.2020.125850
  •    D. Rehnlund, Z. Wang, and L. Nyholm, Lithium-Diffusion Induced Capacity Losses in Lithium-Based Batteries. Adv Mater., 34, 19, 2022. https://doi.org/10.1002/adma.202108827
  •    Y. Guo, H. Wang, X. Feng, Y. Zhao, C. Liang, L. Yang, M. Li, Y. Zhang and W. Gao, 3D MXene microspheres with honeycomb architecture for tumor photothermal/ photodynamic/chemo combination therapy. Nanotechnology, 32, 19, 2021. https://doi.org/10.1088/1361-6528/abe153
  •    X. Chen, Z. Shi, Y. Tian, P. Lin, D. Wu, X. Li, B. Dong, W. Xu and X. Fang, Two-dimensional Ti3C2MXene-based nanostructures for emerging optoelectronic applications. Mater Horizons, 8, 11, 2929–63, 2021. https://doi.org/10.1039/D1MH00986A
  •    H. Xu, A. Ren, J. Wu, and Z. Wang, Recent Advances in 2D MXenes for Photodetection. Adv Funct Mater, 30, 24, 1–16, 2020. https://doi.org/10.1002/adfm.202000907
  •    K. Li, T. H. Chang, Z. Li, H. Yang, F. Fu, and T. Li, Biomimetic MXene Textures with Enhanced Light-to-Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Adv Energy Mater, 9, 34, 1–14, 2019. https://doi.org/10.1002/aenm.201901687
  • L. Liu, H. Zschiesche, M. Antonietti, M. Gibilaro, P. Chamelot, and L. Massot, In Situ Synthesis of MXene with Tunable Morphology by Electrochemical Etching of MAX Phase Prepared in Molten Salt. Adv Energy Mater, 13, 7, 2023. https://doi.org/10.1002/aenm.202203805
  • E.A. Hussein, M.M. Zagho, B.R. Rizeq, N.N. Younes, G. Pintus, and K.A. Mahmoud, Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int J Nanomedicine, 14, 4529–39, 2019. https://doi.org/10.2147/IJN.S202208
  • X. Fan, Y. Ding, Y. Liu, J. Liang, and Y. Chen, Plasmonic Ti3C2Tx MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano, 13, 7, 8124–34, 2019. https://doi.org/10.1021/acsnano.9b03161
  • M.Q. Mehmood, A.R. Shah, M.A. Naveed, N. Mahmood, M. Zubair, and Y. Massoud, MXene-Based Polarization-Insensitive UV-VIS-NIR Meta-Absorber. IEEE Access, 11, 130287–95, 2023. https://doi.org/10.1109/ACCESS.2023.3333533
  • R. Li, L. Zhang, L. Shi, and P.Wang, MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano ,11, 4, 3752–9, 2017. https://doi.org/10.1021/acsnano.6b08415
  • T.Y. Zhang, H. Wang, J. Tong, J. Zhang, X. Wang, and Y. Zeng, High-efficiency ultraviolet shielding and high transparency of Ti3C2Tx MXene/poly(vinyl alcohol) nanocomposite films. Compos Commun., 33, 101235, 2022. https://doi.org/10.1016/j.coco.2022.101235
  • B. Xia, X. Zhang, J. Jiang, Y. Wang, T. Li, and Z. Wang, Facile preparation of high strength, lightweight and thermal insulation Polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding. Compos Commun., 29, 101028, 2022. https://doi.org/10.1016/j.coco.2021.101028
  • P. Liu, W. Ding, J. Liu, L. Shen, F. Jiang, and P. Liu, Surface termination modification on high-conductivity MXene film for energy conversion. J Alloys Compd, 829, 2020. https://doi.org/10.1016/j.jallcom.2020.154634
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, and M. Heon, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater., 23, 37, 4248–53, 2011. https://doi.org/10.1002/adma.201102306
  • W. Yang, J. J. Byun, J. Yang, F. P. Moissinac, Y. Ma, and H. Ding, All-In-One MXene-Boron Nitride-MXene “oREO” with Vertically Aligned Channels for Flexible Structural Supercapacitor Design. ACS Appl Energy Mater., 4, 8, 7959–72, 2021. https://doi.org/10.1021/acsaem.1c01240
  • W. Zheng, J. Halim, J. Rosen, and M. W. Barsoum. Aqueous Electrolytes, MXene-Based Supercapacitors and Their Self-Discharge. Adv Energy Sustain Res., 3, 2, 2022. https://doi.org/10.1002/aesr.202100147
  • K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, and S. Kota, Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv Electron Mater., 2, 6, 1–7, 2016. https://doi.org/10.1002/aelm.201600050
  • C. Yang, W. Que, X. Yin, Y. Tian, Y. Yang, and M. Que, Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta., 225, 416–24, 2017. https://dx.doi.org/10.1016/j.electacta.2016.12.173
  • M. Dahlqvist and J. Rosen. Chalcogen and halogen surface termination coverage in MXenes – structure, stability, and properties. Res Sq.,1–13, 2024. https://www.researchsquare.com/article/rs-4730256/v1?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
  • M. Li, J. Lu, K. Luo, Y. Li, K. Chang, and K. Chen, Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J Am Chem Soc.,141, 11, 4730–7, 2019. https://doi.org/10.1021/jacs.9b00574
  • F. Alhajri, M. M. Fadlallah, A. Alkhaldi, and A. A. Maarouf, Hybrid MXene-Graphene/Hexagonal Boron Nitride Structures: Electronic and Molecular Adsorption Properties. Nanomaterials,12, 16, 1–13, 2022. https://doi.org/10.3390/nano12162739
  • B. Miao, T. Bashir, H. Zhang, T. Ali, S. Raza, and D. He, Impact of various 2D MXene surface terminating groups in energy conversion. Renew Sustain Energy Rev.,199, 114506, 2024. https://doi.org/10.1016/j.rser.2024.114506
  • C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, and N. Kang, Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater.,14, 1135–41, 2015. https://doi.org/10.1038/nmat4374
  • V. Nesterova, V. Korostelev, and K. Klyukin, Unveiling the Role of Termination Groups in Stabilizing MXenes in Contact with Water. J Phys Chem Lett.,15, 13, 3698–704, 2024. https://doi.org/10.1021/acs.jpclett.4c00045
  • H. Riazi, S. K. Nemani, M.C. Grady, B. Anasori, and M. Soroush, Ti3C2MXene-polymer nanocomposites and their applications. J Mater Chem A., 9, 8051–98, 2021. https://doi.org/10.1039/D0TA08023C
  • D. Wang, C. Zhou, A. S. Filatov, W. Cho, F. Lagunas, and S. Vaikuntanathan, Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 24, 1242-1247, 2023. https://doi.org/10.1126/science.add9204. 
  • Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu, and B. Xu, Advances in the Synthesis of 2D MXenes. Adv Mater., 33, 39, 1–30, 2021. https://doi.org/10.1002/adma.202103148
  • M. Rahman and M.S. Al Mamun. Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv., 6, 2, 367–85, 2023. https://doi.org/10.1039/D3NA00874F
  • X. Li, F. Ran, F. Yang, J. Long, and L. Shao, Advances in MXene Films: Synthesis, Assembly, and Applications, Transactions of Tianjin University. Tianjin University; 27217–247, 2021. https://doi.org/10.1007/s12209-021-00282-y
  • G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.H. Lee, J. Rawal, and S.Y. Lee, A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano,16, 9, 13370–429, 2022. https://doi.org/10.1021/acsnano.2c04750
  • T. Bashir, S. A. Ismail, J. Wang, W. Zhu, J. Zhao, and L. Gao, MXene terminating groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl? J Energy Chem.,76, 90–104, 2023. https://doi.org/10.1016/j.jechem.2022.08.032
  • Y. Zhang, W. Xia, Y. Wu, and P. Zhang, Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale,11, 9, 3993–4000, 2019. https://doi.org/10.1039/C9NR01160A
  • A. Champagne and J. C. Charlier, Physical properties of 2D MXenes : from a theoretical perspective Journal of Physics, 0–21, 2021. https://doi.org/10.1088/2515-7639/ab97ee
  • D. Ontiveros, F. Viñes, and C. Sousa, Bandgap engineering of MXene compounds for water splitting. J Mater Chem A., 11,13754–64. 2023. https://doi.org/10.1039/D3TA01933K
  • J. Lu, I. Persson, H. Lind, J. Palisaitis, M. Li, and Y. Li, Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv., 9, 3680–5, 2019. https://doi.org/10.1039/C9NA00324J
  • M. Li, X. Li, G. Qin, K. Luo, J. Lu, and Y. Li, Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 15, (1), 1077–85, 2021. https://doi.org/10.1021/acsnano.0c07972
  • L. Liu, E. Raymundo-Piñero, S. Sunny, P. L. Taberna, and P. Simon, Role of Surface Terminations for Charge Storage of Ti3C2Tx MXene Electrodes in Aqueous Acidic Electrolyte. Angew Chemie, 63, 14, 2024. https://doi.org/10.1002/anie.202319238
  • P. Liu, B. Guan, M. Lu, H. Wang, and Z. Lin, Influence of aqueous solutions treatment on the Li+ storage properties of molten salt derived Ti3C2Clx MXene. Electrochem commun.,136, 107236, 2022. https://doi.org/10.1016/j.elecom.2022.107236
  • J. Björk and J. Rosen, Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical Environments. Chem Mater.,33, 23, 9108–18, 2021. https://doi.org/10.1021/acs.chemmater.1c01264
  • J. Chen, Q. Jin, L. Youbing, H. Shao, P. Liu, Y. Liu, P. Taberna, Q. Huang, Z. Lin, and P. Simon, Molten Salt-Shielded Synthesis (MS 3) of MXenes in Air. Energy Environ. Mater., 6, e12328, 2023. https://doi.org/10.1002/eem2.12328
  • D.D. Kruger, H. García, and A. Primo, Molten Salt Derived MXenes: Synthesis and Applications. Adv Sci., 230, 7106, 2024. https://doi.org/10.1002/advs.202307106
  • L. Liu, M. Orbay, S. Luo, S. Duluard, H. Shao, and J. Harmel, Exfoliation and Delamination of Ti3C2TxMXene Prepared via Molten Salt Etching Route. ACS Nano, 16, 111–8, 2022. https://doi.org/10.1021/acsnano.1c08498
  • D. Gandla, Z. Zhuang, V. Jadhav, and D.Q. Tan, Lewis acid molten salt method for 2D MXene synthesis and energy storage applications: A review. Energy Storage Mater., 63, 102977, 2023. https://doi.org/10.1016/j.ensm.2023.102977
  • T. Zhang, K. Shevchuk, R. Wang, H. Kim, J. Hourani, and Y. Gogotsi, Delamination of Chlorine-Terminated MXene Produced Using Molten Salt Etching. Chem. Mater., 36, 1998−2006, 2024. https://doi.org/10.1021/acs.chemmater.3c02872
  • X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang, and L. Wang, Chlorine-terminated MXene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem Eng J., 432, 134382, 2022. https://doi.org/10.1016/j.cej.2021.134382
  • L. Guo, W. Y. Jiang, M. Shen, C. Xu, C. X. Ding, and S. F. Zhao, High capacitance of MXene (Ti3C2Tx) through Intercalation and Surface Modification in Molten Salt. Electrochim Acta, 401, 139476, 2022. https://doi.org/10.1016/j.electacta.2021.139476
  • K. Arole, J.W. Blivin, S. Saha, D.E. Holta, X. Zhao, and A. Sarmah, Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience, 24, 12, 103403, 2021. https://doi.org/10.1016/j.isci.2021.103403
  • D. Gandla, F. Zhang, and D.Q. Tan, Advantage of Larger Interlayer Spacing of a Mo2Ti2C3 MXene Free-Standing Film Electrode toward an Excellent Performance Supercapacitor in a Binary Ionic Liquid-Organic Electrolyte. ACS Omega, 7, 7190–8, 2022. https://doi.org/10.1021/acsomega.1c06761
  • Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, and Y. Pi, MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angew Chemie, 60, 48, 25318–22, 2021. https://doi.org/10.1002/anie.202112381
  • M. Shen, W. Jiang, K. Liang, S. Zhao, R. Tang, and L. Zhang, One‐Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angew Chemie,133, 52, 27219–24, 2021. https://doi.org/10.1002/anie.202110640
  • W. Fei, J. Li, L. Ma, T. Zhou, X. Zhu, and X. He, Electrochemically-Switched Microwave Response of MXene in Organic Electrolyte. Adv Mater, 2413311, 1–10, 2024. https://doi.org/10.1002/adma.202413311
  • J. Nakayama, H. Zhou, J. Izumi, K. Watanabe, K. Suzuki, and F. Nemoto, Electrical Double Layer Formation at Intercalation Cathode–Organic Electrolyte Interfaces During Initial Lithium-Ion Battery Reactions. Adv Mater Interfaces., 11, 5, 1–9, 2024. https://doi.org/10.1002/admi.202300780
  • C. God, B. Bitschnau, K. Kapper, C. Lenardt, M. Schmuck, and F. Mautner, Intercalation behaviour of magnesium into natural graphite using organic electrolyte systems. RSC Adv., 7, 23, 14168–75, 2017. https://doi.org/10.1039/C6RA28300D
  • S. Song, F. Yin, Y. Fu, J. Ren, J. Ma, and Y. Liu, Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chem Eng J., 451, 138818, 2023. https://doi.org/10.1016/j.cej.2022.138818
  • S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, and K. Gotoh, Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano,10, 3. 3334–41, 2016. https://doi.org/10.1021/acsnano.5b06958
  • J. Zhang, L. Xia, L. Yang, J. Li, Y. Liu, and D. Lan, Ti3C2Tx MXene nanobelts with alkali ion intercalation: Dual-purpose for enhanced lithium-ion batteries and microwave absorption. Carbon, 237, 120148, 2025. https://doi.org/10.1016/j.carbon.2025.120148
  • Y. Wang, J. Li, W. Han, C. Zhao, S. Xu, and D. Wang, Multi-ion competition mechanism within MXene interlayer and Li ion intercalated electrode function. Appl Surf Sci, 623, 157043, 2023. https://doi.org/10.1016/j.apsusc.2023.157043
  • Y. Yamada, K. Usui, C. H. Chiang, K. Kikuchi, K Furukawa, and A. Yamada, General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces, 6, 14, 10892–9, 2014. https://doi.org/10.1021/am5001163
  • G.J. Wang, Q.T. Qu, B. Wang, Y. Shi, S. Tian, and Y.P. Wu, Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. J Power Sources,189, 1, 503–6, 2009. https://doi.org/10.1016/j.jpowsour.2008.11.006
  • J. Zhang, Y. Liu, T. Zhao, P. Li, and Y. Sun, Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ionics, 310, 100–11, 2017. https://dx.doi.org/10.1016/j.ssi.2017.08.013
  • X, Li, M. Li, K. Luo, Y. Hou, P. Li, and Q. Yang, Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti3C2MXenes. ACS Nano,16, 1, 813–22, 2022. https://doi.org/10.1021/acsnano.1c08358
  • M. Okubo, A. Sugahara, S. Kajiyama, and A. Yamada, MXene as a Charge Storage Host. Acc Chem Res., 51, 3, 591–9, 2018. https://doi.org/10.1021/acs.accounts.7b00481
  • N. Anju, Noman, Rahman, D. Sen Lazen, and O. I. Okoli, Electrochemical Impedance Analysis of Ti3C2Tx MXene for Pseudocapacitive Charge Storage. J. Compos. Sci., 139, 2025. https://doi.org/10.3390/jcs9030139
  • K. Paul, A. Khalequea, R. Alia, M. Aly Saad, S. Bacchu, S. Rahman and Z. H. Khan, MXenes from MAX phases: synthesis, hybridization, and advances in supercapacitor applications. RSC Adv., , 15, 8948-8976, 2025. https://doi.org/10.1039/D5RA00271K
  • S. Mohammadi, S. Ahmadi, H. Navid, R. AzadvaGSanae, M. Fari, Z. Sanae, and M. Moeini, High-capacity freestanding supercapacitor electrode based on electrospun Ti3C2Tx MXene/PANI/PVDF composite. Heliyon, 10, 40482, 2024. https://doi.org/10.1016/j.heliyon.2024.e40482

Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching

Year 2025, Volume: 14 Issue: 4, 1339 - 1351, 15.10.2025

Abstract

MXenes are two-dimensional materials with a wide range of applications. The electrochemical properties of these materials are largely determined by their surface terminations (functional groups). Traditionally, hydrofluoric acid (HF) is used for MXene synthesis, which typically results in -O, -F, and -OH surface terminations. However, these groups can limit the MXene's conductivity, stability, electrochemical behavior, and chemical reactivity. In this study, we synthesized multilayer Ti₃C₂Cl₂ MXenes via a molten salt etching route using ZnCl₂, a method that enables the controlled introduction of chlorine surface terminations instead of conventional HF-based approaches. We systematically investigated the lithium-ion intercalation behavior of these chlorine-terminated MXenes (MS-Ti₃C₂Cl₂) in organic electrolytes—DMSO, PC, and ACN—employing a three-electrode Swagelok cell configuration. Electrochemical analysis showed that electrolyte composition strongly affects Li⁺ intercalation behavior. PC enabled pseudocapacitive storage via full desolvation, while DMSO offered high Coulombic efficiency (~100%) with mixed kinetics. ACN caused solvated Li⁺ co-intercalation and poor performance. b-value analysis indicated diffusion-controlled behavior in DMSO (b = 0.663) versus capacitive dominance in ACN (b = 0.884). These results highlight the critical role of termination chemistry and solvent choice in optimizing MXene electrodes for advanced energy storage with customized interfacial properties.

References

  • T. Hu, Y. Chen, H. Liu, L. Liu, C. Dai, and Y. Han, Enhancing the diffusion of lithium ions to propel sulfur redox for lithium-sulfur batteries. Next Energy, 6100212, 2024. https://doi.org/10.1016/j.nxener.2024.100212
  •    K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, V. Nicolosi, and Y. Xu, 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater., 30, 2000842, 2020.
  •    J. Nan, X. Guo, J. Xiao, X. Li, W. Chen, W. Wu, H. Liu, Y. Wang, M. Wu, and G. Wang, Nanoengineering of 2D MXene-Based Materials for Energy Storage Application. Small, 17, 1902085, 2021. https://doi.org/10.1002/smll.201902085
  •    .H. Wang and X. Wu, High capacitance of dipicolinic acid-intercalated MXene in neutral water-based electrolyte. Chemical Engineering Journal, 399, 125850, 2020. https://doi.org/10.1016/j.cej.2020.125850
  •    D. Rehnlund, Z. Wang, and L. Nyholm, Lithium-Diffusion Induced Capacity Losses in Lithium-Based Batteries. Adv Mater., 34, 19, 2022. https://doi.org/10.1002/adma.202108827
  •    Y. Guo, H. Wang, X. Feng, Y. Zhao, C. Liang, L. Yang, M. Li, Y. Zhang and W. Gao, 3D MXene microspheres with honeycomb architecture for tumor photothermal/ photodynamic/chemo combination therapy. Nanotechnology, 32, 19, 2021. https://doi.org/10.1088/1361-6528/abe153
  •    X. Chen, Z. Shi, Y. Tian, P. Lin, D. Wu, X. Li, B. Dong, W. Xu and X. Fang, Two-dimensional Ti3C2MXene-based nanostructures for emerging optoelectronic applications. Mater Horizons, 8, 11, 2929–63, 2021. https://doi.org/10.1039/D1MH00986A
  •    H. Xu, A. Ren, J. Wu, and Z. Wang, Recent Advances in 2D MXenes for Photodetection. Adv Funct Mater, 30, 24, 1–16, 2020. https://doi.org/10.1002/adfm.202000907
  •    K. Li, T. H. Chang, Z. Li, H. Yang, F. Fu, and T. Li, Biomimetic MXene Textures with Enhanced Light-to-Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Adv Energy Mater, 9, 34, 1–14, 2019. https://doi.org/10.1002/aenm.201901687
  • L. Liu, H. Zschiesche, M. Antonietti, M. Gibilaro, P. Chamelot, and L. Massot, In Situ Synthesis of MXene with Tunable Morphology by Electrochemical Etching of MAX Phase Prepared in Molten Salt. Adv Energy Mater, 13, 7, 2023. https://doi.org/10.1002/aenm.202203805
  • E.A. Hussein, M.M. Zagho, B.R. Rizeq, N.N. Younes, G. Pintus, and K.A. Mahmoud, Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int J Nanomedicine, 14, 4529–39, 2019. https://doi.org/10.2147/IJN.S202208
  • X. Fan, Y. Ding, Y. Liu, J. Liang, and Y. Chen, Plasmonic Ti3C2Tx MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano, 13, 7, 8124–34, 2019. https://doi.org/10.1021/acsnano.9b03161
  • M.Q. Mehmood, A.R. Shah, M.A. Naveed, N. Mahmood, M. Zubair, and Y. Massoud, MXene-Based Polarization-Insensitive UV-VIS-NIR Meta-Absorber. IEEE Access, 11, 130287–95, 2023. https://doi.org/10.1109/ACCESS.2023.3333533
  • R. Li, L. Zhang, L. Shi, and P.Wang, MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano ,11, 4, 3752–9, 2017. https://doi.org/10.1021/acsnano.6b08415
  • T.Y. Zhang, H. Wang, J. Tong, J. Zhang, X. Wang, and Y. Zeng, High-efficiency ultraviolet shielding and high transparency of Ti3C2Tx MXene/poly(vinyl alcohol) nanocomposite films. Compos Commun., 33, 101235, 2022. https://doi.org/10.1016/j.coco.2022.101235
  • B. Xia, X. Zhang, J. Jiang, Y. Wang, T. Li, and Z. Wang, Facile preparation of high strength, lightweight and thermal insulation Polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding. Compos Commun., 29, 101028, 2022. https://doi.org/10.1016/j.coco.2021.101028
  • P. Liu, W. Ding, J. Liu, L. Shen, F. Jiang, and P. Liu, Surface termination modification on high-conductivity MXene film for energy conversion. J Alloys Compd, 829, 2020. https://doi.org/10.1016/j.jallcom.2020.154634
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, and M. Heon, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater., 23, 37, 4248–53, 2011. https://doi.org/10.1002/adma.201102306
  • W. Yang, J. J. Byun, J. Yang, F. P. Moissinac, Y. Ma, and H. Ding, All-In-One MXene-Boron Nitride-MXene “oREO” with Vertically Aligned Channels for Flexible Structural Supercapacitor Design. ACS Appl Energy Mater., 4, 8, 7959–72, 2021. https://doi.org/10.1021/acsaem.1c01240
  • W. Zheng, J. Halim, J. Rosen, and M. W. Barsoum. Aqueous Electrolytes, MXene-Based Supercapacitors and Their Self-Discharge. Adv Energy Sustain Res., 3, 2, 2022. https://doi.org/10.1002/aesr.202100147
  • K. Hantanasirisakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, and S. Kota, Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv Electron Mater., 2, 6, 1–7, 2016. https://doi.org/10.1002/aelm.201600050
  • C. Yang, W. Que, X. Yin, Y. Tian, Y. Yang, and M. Que, Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta., 225, 416–24, 2017. https://dx.doi.org/10.1016/j.electacta.2016.12.173
  • M. Dahlqvist and J. Rosen. Chalcogen and halogen surface termination coverage in MXenes – structure, stability, and properties. Res Sq.,1–13, 2024. https://www.researchsquare.com/article/rs-4730256/v1?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
  • M. Li, J. Lu, K. Luo, Y. Li, K. Chang, and K. Chen, Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J Am Chem Soc.,141, 11, 4730–7, 2019. https://doi.org/10.1021/jacs.9b00574
  • F. Alhajri, M. M. Fadlallah, A. Alkhaldi, and A. A. Maarouf, Hybrid MXene-Graphene/Hexagonal Boron Nitride Structures: Electronic and Molecular Adsorption Properties. Nanomaterials,12, 16, 1–13, 2022. https://doi.org/10.3390/nano12162739
  • B. Miao, T. Bashir, H. Zhang, T. Ali, S. Raza, and D. He, Impact of various 2D MXene surface terminating groups in energy conversion. Renew Sustain Energy Rev.,199, 114506, 2024. https://doi.org/10.1016/j.rser.2024.114506
  • C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, and N. Kang, Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater.,14, 1135–41, 2015. https://doi.org/10.1038/nmat4374
  • V. Nesterova, V. Korostelev, and K. Klyukin, Unveiling the Role of Termination Groups in Stabilizing MXenes in Contact with Water. J Phys Chem Lett.,15, 13, 3698–704, 2024. https://doi.org/10.1021/acs.jpclett.4c00045
  • H. Riazi, S. K. Nemani, M.C. Grady, B. Anasori, and M. Soroush, Ti3C2MXene-polymer nanocomposites and their applications. J Mater Chem A., 9, 8051–98, 2021. https://doi.org/10.1039/D0TA08023C
  • D. Wang, C. Zhou, A. S. Filatov, W. Cho, F. Lagunas, and S. Vaikuntanathan, Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 24, 1242-1247, 2023. https://doi.org/10.1126/science.add9204. 
  • Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu, and B. Xu, Advances in the Synthesis of 2D MXenes. Adv Mater., 33, 39, 1–30, 2021. https://doi.org/10.1002/adma.202103148
  • M. Rahman and M.S. Al Mamun. Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv., 6, 2, 367–85, 2023. https://doi.org/10.1039/D3NA00874F
  • X. Li, F. Ran, F. Yang, J. Long, and L. Shao, Advances in MXene Films: Synthesis, Assembly, and Applications, Transactions of Tianjin University. Tianjin University; 27217–247, 2021. https://doi.org/10.1007/s12209-021-00282-y
  • G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.H. Lee, J. Rawal, and S.Y. Lee, A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano,16, 9, 13370–429, 2022. https://doi.org/10.1021/acsnano.2c04750
  • T. Bashir, S. A. Ismail, J. Wang, W. Zhu, J. Zhao, and L. Gao, MXene terminating groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl? J Energy Chem.,76, 90–104, 2023. https://doi.org/10.1016/j.jechem.2022.08.032
  • Y. Zhang, W. Xia, Y. Wu, and P. Zhang, Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale,11, 9, 3993–4000, 2019. https://doi.org/10.1039/C9NR01160A
  • A. Champagne and J. C. Charlier, Physical properties of 2D MXenes : from a theoretical perspective Journal of Physics, 0–21, 2021. https://doi.org/10.1088/2515-7639/ab97ee
  • D. Ontiveros, F. Viñes, and C. Sousa, Bandgap engineering of MXene compounds for water splitting. J Mater Chem A., 11,13754–64. 2023. https://doi.org/10.1039/D3TA01933K
  • J. Lu, I. Persson, H. Lind, J. Palisaitis, M. Li, and Y. Li, Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv., 9, 3680–5, 2019. https://doi.org/10.1039/C9NA00324J
  • M. Li, X. Li, G. Qin, K. Luo, J. Lu, and Y. Li, Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 15, (1), 1077–85, 2021. https://doi.org/10.1021/acsnano.0c07972
  • L. Liu, E. Raymundo-Piñero, S. Sunny, P. L. Taberna, and P. Simon, Role of Surface Terminations for Charge Storage of Ti3C2Tx MXene Electrodes in Aqueous Acidic Electrolyte. Angew Chemie, 63, 14, 2024. https://doi.org/10.1002/anie.202319238
  • P. Liu, B. Guan, M. Lu, H. Wang, and Z. Lin, Influence of aqueous solutions treatment on the Li+ storage properties of molten salt derived Ti3C2Clx MXene. Electrochem commun.,136, 107236, 2022. https://doi.org/10.1016/j.elecom.2022.107236
  • J. Björk and J. Rosen, Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical Environments. Chem Mater.,33, 23, 9108–18, 2021. https://doi.org/10.1021/acs.chemmater.1c01264
  • J. Chen, Q. Jin, L. Youbing, H. Shao, P. Liu, Y. Liu, P. Taberna, Q. Huang, Z. Lin, and P. Simon, Molten Salt-Shielded Synthesis (MS 3) of MXenes in Air. Energy Environ. Mater., 6, e12328, 2023. https://doi.org/10.1002/eem2.12328
  • D.D. Kruger, H. García, and A. Primo, Molten Salt Derived MXenes: Synthesis and Applications. Adv Sci., 230, 7106, 2024. https://doi.org/10.1002/advs.202307106
  • L. Liu, M. Orbay, S. Luo, S. Duluard, H. Shao, and J. Harmel, Exfoliation and Delamination of Ti3C2TxMXene Prepared via Molten Salt Etching Route. ACS Nano, 16, 111–8, 2022. https://doi.org/10.1021/acsnano.1c08498
  • D. Gandla, Z. Zhuang, V. Jadhav, and D.Q. Tan, Lewis acid molten salt method for 2D MXene synthesis and energy storage applications: A review. Energy Storage Mater., 63, 102977, 2023. https://doi.org/10.1016/j.ensm.2023.102977
  • T. Zhang, K. Shevchuk, R. Wang, H. Kim, J. Hourani, and Y. Gogotsi, Delamination of Chlorine-Terminated MXene Produced Using Molten Salt Etching. Chem. Mater., 36, 1998−2006, 2024. https://doi.org/10.1021/acs.chemmater.3c02872
  • X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang, and L. Wang, Chlorine-terminated MXene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem Eng J., 432, 134382, 2022. https://doi.org/10.1016/j.cej.2021.134382
  • L. Guo, W. Y. Jiang, M. Shen, C. Xu, C. X. Ding, and S. F. Zhao, High capacitance of MXene (Ti3C2Tx) through Intercalation and Surface Modification in Molten Salt. Electrochim Acta, 401, 139476, 2022. https://doi.org/10.1016/j.electacta.2021.139476
  • K. Arole, J.W. Blivin, S. Saha, D.E. Holta, X. Zhao, and A. Sarmah, Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience, 24, 12, 103403, 2021. https://doi.org/10.1016/j.isci.2021.103403
  • D. Gandla, F. Zhang, and D.Q. Tan, Advantage of Larger Interlayer Spacing of a Mo2Ti2C3 MXene Free-Standing Film Electrode toward an Excellent Performance Supercapacitor in a Binary Ionic Liquid-Organic Electrolyte. ACS Omega, 7, 7190–8, 2022. https://doi.org/10.1021/acsomega.1c06761
  • Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, and Y. Pi, MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angew Chemie, 60, 48, 25318–22, 2021. https://doi.org/10.1002/anie.202112381
  • M. Shen, W. Jiang, K. Liang, S. Zhao, R. Tang, and L. Zhang, One‐Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angew Chemie,133, 52, 27219–24, 2021. https://doi.org/10.1002/anie.202110640
  • W. Fei, J. Li, L. Ma, T. Zhou, X. Zhu, and X. He, Electrochemically-Switched Microwave Response of MXene in Organic Electrolyte. Adv Mater, 2413311, 1–10, 2024. https://doi.org/10.1002/adma.202413311
  • J. Nakayama, H. Zhou, J. Izumi, K. Watanabe, K. Suzuki, and F. Nemoto, Electrical Double Layer Formation at Intercalation Cathode–Organic Electrolyte Interfaces During Initial Lithium-Ion Battery Reactions. Adv Mater Interfaces., 11, 5, 1–9, 2024. https://doi.org/10.1002/admi.202300780
  • C. God, B. Bitschnau, K. Kapper, C. Lenardt, M. Schmuck, and F. Mautner, Intercalation behaviour of magnesium into natural graphite using organic electrolyte systems. RSC Adv., 7, 23, 14168–75, 2017. https://doi.org/10.1039/C6RA28300D
  • S. Song, F. Yin, Y. Fu, J. Ren, J. Ma, and Y. Liu, Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chem Eng J., 451, 138818, 2023. https://doi.org/10.1016/j.cej.2022.138818
  • S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, and K. Gotoh, Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano,10, 3. 3334–41, 2016. https://doi.org/10.1021/acsnano.5b06958
  • J. Zhang, L. Xia, L. Yang, J. Li, Y. Liu, and D. Lan, Ti3C2Tx MXene nanobelts with alkali ion intercalation: Dual-purpose for enhanced lithium-ion batteries and microwave absorption. Carbon, 237, 120148, 2025. https://doi.org/10.1016/j.carbon.2025.120148
  • Y. Wang, J. Li, W. Han, C. Zhao, S. Xu, and D. Wang, Multi-ion competition mechanism within MXene interlayer and Li ion intercalated electrode function. Appl Surf Sci, 623, 157043, 2023. https://doi.org/10.1016/j.apsusc.2023.157043
  • Y. Yamada, K. Usui, C. H. Chiang, K. Kikuchi, K Furukawa, and A. Yamada, General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces, 6, 14, 10892–9, 2014. https://doi.org/10.1021/am5001163
  • G.J. Wang, Q.T. Qu, B. Wang, Y. Shi, S. Tian, and Y.P. Wu, Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. J Power Sources,189, 1, 503–6, 2009. https://doi.org/10.1016/j.jpowsour.2008.11.006
  • J. Zhang, Y. Liu, T. Zhao, P. Li, and Y. Sun, Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ionics, 310, 100–11, 2017. https://dx.doi.org/10.1016/j.ssi.2017.08.013
  • X, Li, M. Li, K. Luo, Y. Hou, P. Li, and Q. Yang, Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti3C2MXenes. ACS Nano,16, 1, 813–22, 2022. https://doi.org/10.1021/acsnano.1c08358
  • M. Okubo, A. Sugahara, S. Kajiyama, and A. Yamada, MXene as a Charge Storage Host. Acc Chem Res., 51, 3, 591–9, 2018. https://doi.org/10.1021/acs.accounts.7b00481
  • N. Anju, Noman, Rahman, D. Sen Lazen, and O. I. Okoli, Electrochemical Impedance Analysis of Ti3C2Tx MXene for Pseudocapacitive Charge Storage. J. Compos. Sci., 139, 2025. https://doi.org/10.3390/jcs9030139
  • K. Paul, A. Khalequea, R. Alia, M. Aly Saad, S. Bacchu, S. Rahman and Z. H. Khan, MXenes from MAX phases: synthesis, hybridization, and advances in supercapacitor applications. RSC Adv., , 15, 8948-8976, 2025. https://doi.org/10.1039/D5RA00271K
  • S. Mohammadi, S. Ahmadi, H. Navid, R. AzadvaGSanae, M. Fari, Z. Sanae, and M. Moeini, High-capacity freestanding supercapacitor electrode based on electrospun Ti3C2Tx MXene/PANI/PVDF composite. Heliyon, 10, 40482, 2024. https://doi.org/10.1016/j.heliyon.2024.e40482
There are 69 citations in total.

Details

Primary Language English
Subjects Renewable Energy Resources , Electrochemical Energy Storage and Conversion, Nanomaterials
Journal Section Research Articles
Authors

Esra Kilavuz 0000-0001-9324-5346

Early Pub Date September 15, 2025
Publication Date October 15, 2025
Submission Date June 26, 2025
Acceptance Date August 12, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Kilavuz, E. (2025). Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1339-1351. https://doi.org/10.28948/ngumuh.1727823
AMA Kilavuz E. Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching. NOHU J. Eng. Sci. October 2025;14(4):1339-1351. doi:10.28948/ngumuh.1727823
Chicago Kilavuz, Esra. “Electrolyte-Dependent Lithium Intercalation in Chlorine-Terminated MXenes Synthesized via Molten Salt Etching”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1339-51. https://doi.org/10.28948/ngumuh.1727823.
EndNote Kilavuz E (October 1, 2025) Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1339–1351.
IEEE E. Kilavuz, “Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1339–1351, 2025, doi: 10.28948/ngumuh.1727823.
ISNAD Kilavuz, Esra. “Electrolyte-Dependent Lithium Intercalation in Chlorine-Terminated MXenes Synthesized via Molten Salt Etching”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1339-1351. https://doi.org/10.28948/ngumuh.1727823.
JAMA Kilavuz E. Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching. NOHU J. Eng. Sci. 2025;14:1339–1351.
MLA Kilavuz, Esra. “Electrolyte-Dependent Lithium Intercalation in Chlorine-Terminated MXenes Synthesized via Molten Salt Etching”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1339-51, doi:10.28948/ngumuh.1727823.
Vancouver Kilavuz E. Electrolyte-dependent lithium intercalation in Chlorine-Terminated MXenes synthesized via molten salt etching. NOHU J. Eng. Sci. 2025;14(4):1339-51.

download