Research Article
BibTex RIS Cite

Konya havzası, Türkiye’de çölleşme eğilimleri ve iklim–bitki örtüsü etkileşimlerinin çok ölçekli uzaktan algılama analizi (2000–2025)

Year 2025, Volume: 14 Issue: 4, 1690 - 1699, 15.10.2025

Abstract

Türkiye'nin önemli bir agro-ekosistemi olan Konya Havzası, çölleşmeye karşı giderek daha savunmasız hale gelmektedir. Bu çalışma, Google Earth Engine platformu kullanılarak 2000 ve 2025 yılları arasındaki bitki örtüsü dinamiklerini ve iklimsel etkenleri değerlendirmektedir. Uzun vadeli eğilimleri haritalamak için MODIS zaman serileri (NDVI ve SAVI) analiz edilmiş ve orta çözünürlüklü Landsat verileriyle bozulma odak noktaları belirlenmiştir. Bulgularımız bir çelişkiyi ortaya koymaktadır; zira havza, özellikle tarım arazilerinde (+0.0042 NDVI birimi/yıl) hafif bir yeşillenme eğilimi gösterirken, Landsat verileri toplam 3471.93 km² alana yayılan bozulma odakları olduğunu göstermektedir. Bu alanların %21.4'ünü tarım arazileri oluşturmakta ve yaklaşık %70'i, yeraltı suyuna dayalı sulamanın en yoğun olduğu 1000 m'nin altındaki rakımlarda meydana gelmektedir. İklimsel etkenler bu dinamiği netleştirmektedir. Anlamlı bir ısınma eğilimi (0.05 °C/yıl; p = 0.0102) tespit edilirken, bitki örtüsü yağışla pozitif korelasyon göstermiş (r = 0.50, p < 0.01) ancak sıcaklıkla anlamlı bir ilişki sergilememiştir (r = 0.09, p = 0.66). Mekansal haritalar, kuzeydeki yağışa bağımlı otlaklarda yağış kontrolünü ve güneydeki sulu tarım ovalarında sıcaklık stresini doğrulamıştır. Bu çok ölçekli yaklaşım, mütevazı bir yeşillenmenin yerel bozulmayla bir arada bulunması nedeniyle havza geneli ortalamalarının yanıltıcı olabileceğini göstermektedir. Bulgular, bu hayati bölgedeki çölleşme risklerini azaltmak için hedefe yönelik arazi ve su yönetimi politikalarına rehberlik edecek mekansal olarak ayrıntılı verilere duyulan ihtiyacı vurgulamaktadır.

References

  • UNCCD, United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa, United Nations, 1994. https://www.unccd.int/sites/default/files/2022-02/UNCCD_Convention_ENG_0.pdf
  • IPCC, Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2023.
  • J. F. Reynolds, D. M. S. Smith, E. F. Lambin, B. Turner, M. Mortimore, S. P. Batterbury, T. R. Downing, H. Dowlatabadi, R. J. Fernández, J. E. Herrick, Global desertification: building a science for dryland development. Science, 316, 5826, 847-851, 2007. http://dx.doi.org/10.1126/science.1131634.
  • A. R. Huete, A Soil-Adjusted Vegetation Index (Savi). Remote Sens Environ, 25, 3, 295-309, 1988. https://doi.org/10.1016/0034-4257(88)90106-X.
  • E. Lioubimtseva, R. Cole, J. M. Adams, and G. Kapustin, Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ, 62, 2, 285-308, 2005. https://doi.org/10.1016/j.jaridenv.2004.11.005.
  • J. Peñuelas and M. Boada, A global change‐induced biome shift in the Montseny mountains (NE Spain). Global change biology, 9, 2, 131-140, 2003. http://dx.doi.org/10.1046/j.1365-2486.2003.00566.x.
  • F. Alshehri, B. A. Abuamarah, and H. T. Abd El-Hamid, Impact of land use dynamics on land surface temperature using optical remote sensing data integrated with statistical analysis in Riyadh, Saudi Arabia. Advances in Space Research, 72, 5, 1739-1750, 2023. https://doi.org/10.1016/j.asr.2023.04.051.
  • M. H. Easdale, O. Bruzzone, P. Mapfumo, and P. Tittonell, Phases or regimes? Revisiting NDVI trends as proxies for land degradation. Land Degradation & Development, 29, 3, 433-445, 2018. https://doi.org/10.1002/ldr.2871.
  • G. Faour, M. Mhawej, and A. Fayad, Detecting changes in vegetation trends in the Middle East and North Africa (MENA) region using SPOT vegetation. Cybergeo: European Journal of Geography, 2016. https://doi.org/10.4000/cybergeo.27620.
  • S. W. Rifai, M. G. De Kauwe, A. M. Ukkola, L. A. Cernusak, P. Meir, B. E. Medlyn, A. J. Pitman, Thirty-eight years of CO2 fertilization have outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences Discussions, 2021, 1-41, 2021. https://doi.org/10.5194/bg-19-491-2022.
  • P. Gonzalez, C. J. Tucker, and H. Sy, Tree density and species decline in the African Sahel attributable to climate. J Arid Environ, 78, 55-64, 2012. https://doi.org/10.1016/j.jaridenv.2011.11.001.
  • S. Piao, X. Wang, T. Park, C. Chen, X. Lian, Y. He, J. W. Bjerke, A. Chen, P. Ciais, H. Tømmervik, Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 1, 14-27, 2020. http://dx.doi.org/10.1038/s43017-019-0001-x.
  • C. Chen, T. Park, X. Wang, S. Piao, B. Xu, R. K. Chaturvedi, R. Fuchs, V. Brovkin, P. Ciais, R. Fensholt, H. Tømmervik, G. Bala, Z. Zhu, R. R. Nemani, R. B. Myneni, China and India lead in greening of the world through land-use management. Nature sustainability, 2, 2, 122-129, 2019. https://www.nature.com/articles/s41893-019-0220-7.
  • O. Orhan, M. Haghshenas Haghighi, V. Demir, E. Gökkaya, F. Gutiérrez, and D. Al-Halbouni, Spatial and temporal patterns of land subsidence and sinkhole occurrence in the Konya Endorheic Basin, Turkey. Geosciences, 14, 1, 5, 2023. https://doi.org/10.3390/geosciences14010005.
  • O. Orhan and M. Yakar, Investigating land surface temperature changes using Landsat data in Konya, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 285-289, 2016. http://dx.doi.org/10.5194/isprsarchives-XLI-B8-285-2016.
  • F. Caló, D. Notti, J. P. Galve, S. Abdikan, T. Görüm, A. Pepe, F. Balık Şanlı, Dinsar-Based detection of land subsidence and correlation with groundwater depletion in Konya Plain. Turkey, Remote sensing, 9, 1, 83, 2017. https://doi.org/10.3390/rs9010083.
  • A. Çağlar, O. Dengiz, and I. Cinkaya, Monitoring of drought severity in Konya closed basin using Standardized Precipitation index and Modis satellite images. International Symposium on Soil Science and Plant Nutrition Samsun TÜRKİYE, 18-19 December 2021.
  • V. Kartal and M. Nones, Assessment of meteorological, hydrological and groundwater drought in the Konya closed basin, Türkiye. Environmental Earth Sciences, 83, 9, 285, 2024/05/02 2024. https://doi.org/10.1007/s12665-024-11587-1.
  • N. Yagmur, B. B. Bilgilioglu, N. Musaoglu, E. Erten, and A. Tanik, Temporal changes of lentic system surfaces in Konya Closed Basin, Turkey. Conference Proceeding Book: 3rd International Conference on Civil and Environmental Engineering (ICOCEE), Çeşme Türkiye, 24-27 April 2018.
  • G. Yılmaz, M. A. Çolak, İ. K. Özgencil, M. Metin, M. Korkmaz, S. Ertuğrul, M. Soyluer, T. Bucak, Ü. N. Tavşanoğlu, K. Özkan, Z. Akyürek, M. Beklioğlu, E. Jeppesen, Decadal changes in size, salinity, waterbirds, and fish in lakes of the Konya Closed Basin, Turkey, associated with climate change and increasing water abstraction for agriculture. Inland Waters, 11, 4, 538-555, 2021. https://doi.org/10.1080/20442041.2021.1924034.
  • S. Abdikan, A. Sekertekin, M. Ustuner, F. Balik Sanli, and R. Nasirzadehdizaji, Backscatter analysis using multi-temporal Sentinel-1 SAR data for crop growth of maize in Konya Basin, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 9-13, 2018. http://dx.doi.org/10.5194/isprs-archives-XLII-3-9-2018.
  • F. Calò, D. Notti, J. Galve, S. Abdikan, T. Görüm, O. Orhan, H. B. Makineci, A. Pepe, M. Yakar, F. Balik Şanlı, A multi-source data approach for the investigation of land subsidence in the Konya basin, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 129-135, 2018. https://doi.org/10.5194/isprs-archives-XLII-3-W4-129-2018.
  • N. Şireci, G. Aslan, and Z. Cakir, Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences, 30, 5, 681-697, 2021. https://doi.org/10.3906/yer-2104-22.
  • K. M. de Beurs and G. M. Henebry, A statistical framework for the analysis of long image time series. International Journal of Remote Sensing, 26, 8, 1551-1573, 2005. http://dx.doi.org/10.1080/01431160512331326657.
  • K. M. de Beurs, C. K. Wright, and G. M. Henebry, Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetatedland surface in Russia and Kazakhstan. Environmental Research Letters, 4, 4, 045012, 2009. http://dx.doi.org/10.1088/1748-9326/4/4/045012.
  • H. Eskandari Dameneh, H. Gholami, M. W. Telfer, J. R. Comino, A. L. Collins, and J. D. Jansen, Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices. Scientific Reports, 11, 1, 20548, 2021. https://doi.org/10.1038/s41598-021-99636-8.
  • IPCC, Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2019.
  • A. W. Ahmed, E. Kalkan, A. Guzy, M. Alacali, and A. Malinowska, Modeling of land subsidence caused by groundwater withdrawal in Konya Closed Basin, Turkey. Proceedings of the International Association of Hydrological Sciences, 382, 397-401, 2020. https://doi.org/10.5194/piahs-382-397-2020.
  • M. Mayes, E. Marin-Spiotta, L. Szymanski, M. A. Erdoğan, M. Ozdoğan, and M. Clayton, Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey. Geoderma, 232, 517-527, 2014. https://doi.org/10.1016/j.geoderma.2014.06.002.
  • N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ, 202, 18-27, 2017. https://doi.org/10.1016/j.rse.2017.06.031.
  • K. Didan, MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center (DAAC) data set, MOD13Q1. 006, 2015.
  • USGS. Landsat 8-9 Collection 2 Level-2 Science Products. https://www.usgs.gov/landsat-missions/landsat-collections Accessed 10 June 2025.
  • C. Funk, P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland, L. Harrison, A. Hoell,, The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2, 1, 1-21, 2015. https://doi.org/10.1038/sdata.2015.66.
  • J. Muñoz-Sabater, E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach,, ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data, 13, 9, 4349-4383, 2021. https://doi.org/10.24381/cds.68d2bb30.
  • D. Zanaga, R. Van De Kerchove, D. Daems, W. De Keersmaecker, C. Brockmann, G. Kirches, J. Wevers, O. Cartus, M. Santoro, S. Fritz, ESA WorldCover 10 m 2021. v200, 2022. https://doi.org/10.5281/zenodo.7254221.
  • T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, The shuttle radar topography mission. Reviews of geophysics, 45, 2, 2007. https://doi.org/10.1029/2005RG000183.
  • C. J. Tucker, Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 8, 2, 127-150, 1979. https://doi.org/10.1016/0034-4257(79)90013-0.
  • J. W. Rouse Jr, R. H. Haas, D. Deering, J. Schell, and J. C. Harlan, Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA 1974. https://ntrs.nasa.gov/citations/19750020419
  • T. B. Altın, B. Barak, and B. N. Altın, Change in precipitation and temperature amounts over three decades in central Anatolia, Turkey. Atmospheric and Climate Sciences, 2, 1, 107-125, 2012. http://dx.doi.org/10.4236/acs.2012.21013.
  • E. Ergene, F. Bektaş Balçık, and F. Balik Şanlı, Trends analysis of agricultural drought in central anatolian basin, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 141-148, 2024. https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-141-2024.
  • M. H. Kesikoglu, C. Ozkan, and T. Kaynak, The impact of impervious surface, vegetation, and soil areas on land surface temperatures in a semi-arid region using Landsat satellite images enriched with Ndaisi method data. Environmental Monitoring and Assessment, 193, 3, 143, 2021. https://doi.org/10.1007/s10661-021-08916-3.
  • A. Üstün, E. Tuşat, S. Yalvaç, İ. Özkan, Y. Eren, A. Özdemir, İ.Ö. Bildirici, T. Üstüntaş, O. S. Kırtıloğlu, M. Mesutoğlu, Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environmental earth sciences, 73, 10, 6691-6703, 2015. https://doi.org/10.1007/s12665-014-3890-5.
  • A. Bozdağ, Z. Ünal, A. E. Karkınlı, A. B. Soomro, M. S. Mir, and Y. Gulzar, An Integrated Approach for Groundwater Potential Prediction Using Multi-Criteria and Heuristic Methods. Water, 17, 8, 1212, 2025. https://doi.org/10.3390/w17081212.
  • S. Robinson, Land degradation in Central Asia: evidence, perception and policy. in The End of Desertification? Disputing Environmental Change in the Drylands: Springer, 451-490, 2016.
  • T. Berdimbetov, Z.-G. Ma, S. Shelton, S. Ilyas, and S. Nietullaeva, Identifying land degradation and its driving factors in the Aral sea basin from 1982 to 2015. Frontiers in Earth Science, 9, 2021. https://doi.org/10.3389/feart.2021.690000.
  • R. J. Donohue, M. L. Roderick, T. R. McVicar, and G. D. Farquhar, Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophysical Research Letters, 40, 12, 3031-3035, 2013. https://doi.org/10.1002/grl.50563.

Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025)

Year 2025, Volume: 14 Issue: 4, 1690 - 1699, 15.10.2025

Abstract

Konya Basin, a key agro-ecosystem in Turkey, is increasingly vulnerable to desertification. This study assesses vegetation dynamics and climatic drivers between 2000 and 2025 using the Google Earth Engine platform. MODIS time-series (NDVI and SAVI) were analyzed to map long-term trends, and medium-resolution Landsat data identified degradation hotspots. Our results reveal an apparent contradiction. The basin shows a subtle greening trend, particularly in croplands (+0.0042 NDVI units yr⁻¹). However, medium-resolution Landsat data simultaneously indicate degradation hotspots covering a total of 3471.93 km². Croplands account for 21.4% of these areas, and about 70% occur below 1000 m, where groundwater-dependent irrigation is most intense. Climatic drivers clarify this dynamic. A significant warming trend of 0.05 °C yr⁻¹ (p = 0.0102) was detected, while vegetation correlated positively with precipitation (r = 0.50, p < 0.01) but showed no significant relationship with temperature (r = 0.09, p = 0.66). Spatial maps confirmed precipitation control in northern rainfed grasslands and temperature stress in irrigated southern plains. This multi-scale approach shows that basin-wide averages can be misleading, as modest greening coexists with local degradation. The findings emphasize the need for spatially explicit data to guide targeted land and water management policies to mitigate desertification risks in this vital region.

References

  • UNCCD, United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa, United Nations, 1994. https://www.unccd.int/sites/default/files/2022-02/UNCCD_Convention_ENG_0.pdf
  • IPCC, Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2023.
  • J. F. Reynolds, D. M. S. Smith, E. F. Lambin, B. Turner, M. Mortimore, S. P. Batterbury, T. R. Downing, H. Dowlatabadi, R. J. Fernández, J. E. Herrick, Global desertification: building a science for dryland development. Science, 316, 5826, 847-851, 2007. http://dx.doi.org/10.1126/science.1131634.
  • A. R. Huete, A Soil-Adjusted Vegetation Index (Savi). Remote Sens Environ, 25, 3, 295-309, 1988. https://doi.org/10.1016/0034-4257(88)90106-X.
  • E. Lioubimtseva, R. Cole, J. M. Adams, and G. Kapustin, Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ, 62, 2, 285-308, 2005. https://doi.org/10.1016/j.jaridenv.2004.11.005.
  • J. Peñuelas and M. Boada, A global change‐induced biome shift in the Montseny mountains (NE Spain). Global change biology, 9, 2, 131-140, 2003. http://dx.doi.org/10.1046/j.1365-2486.2003.00566.x.
  • F. Alshehri, B. A. Abuamarah, and H. T. Abd El-Hamid, Impact of land use dynamics on land surface temperature using optical remote sensing data integrated with statistical analysis in Riyadh, Saudi Arabia. Advances in Space Research, 72, 5, 1739-1750, 2023. https://doi.org/10.1016/j.asr.2023.04.051.
  • M. H. Easdale, O. Bruzzone, P. Mapfumo, and P. Tittonell, Phases or regimes? Revisiting NDVI trends as proxies for land degradation. Land Degradation & Development, 29, 3, 433-445, 2018. https://doi.org/10.1002/ldr.2871.
  • G. Faour, M. Mhawej, and A. Fayad, Detecting changes in vegetation trends in the Middle East and North Africa (MENA) region using SPOT vegetation. Cybergeo: European Journal of Geography, 2016. https://doi.org/10.4000/cybergeo.27620.
  • S. W. Rifai, M. G. De Kauwe, A. M. Ukkola, L. A. Cernusak, P. Meir, B. E. Medlyn, A. J. Pitman, Thirty-eight years of CO2 fertilization have outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences Discussions, 2021, 1-41, 2021. https://doi.org/10.5194/bg-19-491-2022.
  • P. Gonzalez, C. J. Tucker, and H. Sy, Tree density and species decline in the African Sahel attributable to climate. J Arid Environ, 78, 55-64, 2012. https://doi.org/10.1016/j.jaridenv.2011.11.001.
  • S. Piao, X. Wang, T. Park, C. Chen, X. Lian, Y. He, J. W. Bjerke, A. Chen, P. Ciais, H. Tømmervik, Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 1, 14-27, 2020. http://dx.doi.org/10.1038/s43017-019-0001-x.
  • C. Chen, T. Park, X. Wang, S. Piao, B. Xu, R. K. Chaturvedi, R. Fuchs, V. Brovkin, P. Ciais, R. Fensholt, H. Tømmervik, G. Bala, Z. Zhu, R. R. Nemani, R. B. Myneni, China and India lead in greening of the world through land-use management. Nature sustainability, 2, 2, 122-129, 2019. https://www.nature.com/articles/s41893-019-0220-7.
  • O. Orhan, M. Haghshenas Haghighi, V. Demir, E. Gökkaya, F. Gutiérrez, and D. Al-Halbouni, Spatial and temporal patterns of land subsidence and sinkhole occurrence in the Konya Endorheic Basin, Turkey. Geosciences, 14, 1, 5, 2023. https://doi.org/10.3390/geosciences14010005.
  • O. Orhan and M. Yakar, Investigating land surface temperature changes using Landsat data in Konya, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 285-289, 2016. http://dx.doi.org/10.5194/isprsarchives-XLI-B8-285-2016.
  • F. Caló, D. Notti, J. P. Galve, S. Abdikan, T. Görüm, A. Pepe, F. Balık Şanlı, Dinsar-Based detection of land subsidence and correlation with groundwater depletion in Konya Plain. Turkey, Remote sensing, 9, 1, 83, 2017. https://doi.org/10.3390/rs9010083.
  • A. Çağlar, O. Dengiz, and I. Cinkaya, Monitoring of drought severity in Konya closed basin using Standardized Precipitation index and Modis satellite images. International Symposium on Soil Science and Plant Nutrition Samsun TÜRKİYE, 18-19 December 2021.
  • V. Kartal and M. Nones, Assessment of meteorological, hydrological and groundwater drought in the Konya closed basin, Türkiye. Environmental Earth Sciences, 83, 9, 285, 2024/05/02 2024. https://doi.org/10.1007/s12665-024-11587-1.
  • N. Yagmur, B. B. Bilgilioglu, N. Musaoglu, E. Erten, and A. Tanik, Temporal changes of lentic system surfaces in Konya Closed Basin, Turkey. Conference Proceeding Book: 3rd International Conference on Civil and Environmental Engineering (ICOCEE), Çeşme Türkiye, 24-27 April 2018.
  • G. Yılmaz, M. A. Çolak, İ. K. Özgencil, M. Metin, M. Korkmaz, S. Ertuğrul, M. Soyluer, T. Bucak, Ü. N. Tavşanoğlu, K. Özkan, Z. Akyürek, M. Beklioğlu, E. Jeppesen, Decadal changes in size, salinity, waterbirds, and fish in lakes of the Konya Closed Basin, Turkey, associated with climate change and increasing water abstraction for agriculture. Inland Waters, 11, 4, 538-555, 2021. https://doi.org/10.1080/20442041.2021.1924034.
  • S. Abdikan, A. Sekertekin, M. Ustuner, F. Balik Sanli, and R. Nasirzadehdizaji, Backscatter analysis using multi-temporal Sentinel-1 SAR data for crop growth of maize in Konya Basin, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 9-13, 2018. http://dx.doi.org/10.5194/isprs-archives-XLII-3-9-2018.
  • F. Calò, D. Notti, J. Galve, S. Abdikan, T. Görüm, O. Orhan, H. B. Makineci, A. Pepe, M. Yakar, F. Balik Şanlı, A multi-source data approach for the investigation of land subsidence in the Konya basin, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 129-135, 2018. https://doi.org/10.5194/isprs-archives-XLII-3-W4-129-2018.
  • N. Şireci, G. Aslan, and Z. Cakir, Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences, 30, 5, 681-697, 2021. https://doi.org/10.3906/yer-2104-22.
  • K. M. de Beurs and G. M. Henebry, A statistical framework for the analysis of long image time series. International Journal of Remote Sensing, 26, 8, 1551-1573, 2005. http://dx.doi.org/10.1080/01431160512331326657.
  • K. M. de Beurs, C. K. Wright, and G. M. Henebry, Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetatedland surface in Russia and Kazakhstan. Environmental Research Letters, 4, 4, 045012, 2009. http://dx.doi.org/10.1088/1748-9326/4/4/045012.
  • H. Eskandari Dameneh, H. Gholami, M. W. Telfer, J. R. Comino, A. L. Collins, and J. D. Jansen, Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices. Scientific Reports, 11, 1, 20548, 2021. https://doi.org/10.1038/s41598-021-99636-8.
  • IPCC, Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2019.
  • A. W. Ahmed, E. Kalkan, A. Guzy, M. Alacali, and A. Malinowska, Modeling of land subsidence caused by groundwater withdrawal in Konya Closed Basin, Turkey. Proceedings of the International Association of Hydrological Sciences, 382, 397-401, 2020. https://doi.org/10.5194/piahs-382-397-2020.
  • M. Mayes, E. Marin-Spiotta, L. Szymanski, M. A. Erdoğan, M. Ozdoğan, and M. Clayton, Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey. Geoderma, 232, 517-527, 2014. https://doi.org/10.1016/j.geoderma.2014.06.002.
  • N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ, 202, 18-27, 2017. https://doi.org/10.1016/j.rse.2017.06.031.
  • K. Didan, MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center (DAAC) data set, MOD13Q1. 006, 2015.
  • USGS. Landsat 8-9 Collection 2 Level-2 Science Products. https://www.usgs.gov/landsat-missions/landsat-collections Accessed 10 June 2025.
  • C. Funk, P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland, L. Harrison, A. Hoell,, The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2, 1, 1-21, 2015. https://doi.org/10.1038/sdata.2015.66.
  • J. Muñoz-Sabater, E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach,, ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data, 13, 9, 4349-4383, 2021. https://doi.org/10.24381/cds.68d2bb30.
  • D. Zanaga, R. Van De Kerchove, D. Daems, W. De Keersmaecker, C. Brockmann, G. Kirches, J. Wevers, O. Cartus, M. Santoro, S. Fritz, ESA WorldCover 10 m 2021. v200, 2022. https://doi.org/10.5281/zenodo.7254221.
  • T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, The shuttle radar topography mission. Reviews of geophysics, 45, 2, 2007. https://doi.org/10.1029/2005RG000183.
  • C. J. Tucker, Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 8, 2, 127-150, 1979. https://doi.org/10.1016/0034-4257(79)90013-0.
  • J. W. Rouse Jr, R. H. Haas, D. Deering, J. Schell, and J. C. Harlan, Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA 1974. https://ntrs.nasa.gov/citations/19750020419
  • T. B. Altın, B. Barak, and B. N. Altın, Change in precipitation and temperature amounts over three decades in central Anatolia, Turkey. Atmospheric and Climate Sciences, 2, 1, 107-125, 2012. http://dx.doi.org/10.4236/acs.2012.21013.
  • E. Ergene, F. Bektaş Balçık, and F. Balik Şanlı, Trends analysis of agricultural drought in central anatolian basin, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 141-148, 2024. https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-141-2024.
  • M. H. Kesikoglu, C. Ozkan, and T. Kaynak, The impact of impervious surface, vegetation, and soil areas on land surface temperatures in a semi-arid region using Landsat satellite images enriched with Ndaisi method data. Environmental Monitoring and Assessment, 193, 3, 143, 2021. https://doi.org/10.1007/s10661-021-08916-3.
  • A. Üstün, E. Tuşat, S. Yalvaç, İ. Özkan, Y. Eren, A. Özdemir, İ.Ö. Bildirici, T. Üstüntaş, O. S. Kırtıloğlu, M. Mesutoğlu, Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environmental earth sciences, 73, 10, 6691-6703, 2015. https://doi.org/10.1007/s12665-014-3890-5.
  • A. Bozdağ, Z. Ünal, A. E. Karkınlı, A. B. Soomro, M. S. Mir, and Y. Gulzar, An Integrated Approach for Groundwater Potential Prediction Using Multi-Criteria and Heuristic Methods. Water, 17, 8, 1212, 2025. https://doi.org/10.3390/w17081212.
  • S. Robinson, Land degradation in Central Asia: evidence, perception and policy. in The End of Desertification? Disputing Environmental Change in the Drylands: Springer, 451-490, 2016.
  • T. Berdimbetov, Z.-G. Ma, S. Shelton, S. Ilyas, and S. Nietullaeva, Identifying land degradation and its driving factors in the Aral sea basin from 1982 to 2015. Frontiers in Earth Science, 9, 2021. https://doi.org/10.3389/feart.2021.690000.
  • R. J. Donohue, M. L. Roderick, T. R. McVicar, and G. D. Farquhar, Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophysical Research Letters, 40, 12, 3031-3035, 2013. https://doi.org/10.1002/grl.50563.
There are 46 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Ahmet Emin Karkınlı 0000-0001-7216-6251

Early Pub Date October 7, 2025
Publication Date October 15, 2025
Submission Date September 26, 2025
Acceptance Date October 7, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Karkınlı, A. E. (2025). Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1690-1699. https://doi.org/10.28948/ngumuh.1791557
AMA Karkınlı AE. Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025). NOHU J. Eng. Sci. October 2025;14(4):1690-1699. doi:10.28948/ngumuh.1791557
Chicago Karkınlı, Ahmet Emin. “Multi-Scale Remote Sensing of Desertification Trends and Climate–vegetation Interactions in the Konya Basin, Türkiye (2000–2025)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1690-99. https://doi.org/10.28948/ngumuh.1791557.
EndNote Karkınlı AE (October 1, 2025) Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1690–1699.
IEEE A. E. Karkınlı, “Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025)”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1690–1699, 2025, doi: 10.28948/ngumuh.1791557.
ISNAD Karkınlı, Ahmet Emin. “Multi-Scale Remote Sensing of Desertification Trends and Climate–vegetation Interactions in the Konya Basin, Türkiye (2000–2025)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1690-1699. https://doi.org/10.28948/ngumuh.1791557.
JAMA Karkınlı AE. Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025). NOHU J. Eng. Sci. 2025;14:1690–1699.
MLA Karkınlı, Ahmet Emin. “Multi-Scale Remote Sensing of Desertification Trends and Climate–vegetation Interactions in the Konya Basin, Türkiye (2000–2025)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1690-9, doi:10.28948/ngumuh.1791557.
Vancouver Karkınlı AE. Multi-scale remote sensing of desertification trends and climate–vegetation interactions in the Konya basin, Türkiye (2000–2025). NOHU J. Eng. Sci. 2025;14(4):1690-9.

download