Research Article
BibTex RIS Cite

Fingerprint recognition enhanced by orientation information: A modular image processing approach

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Fingerprint recognition systems have gained importance in many areas such as forensics and cybersecurity due to their reliability in biometric authentication. This study develops a holistic analysis approach that provides solutions to the difficulties encountered in processing low-quality and distorted fingerprint images. The proposed system consists of basic stages such as preprocessing, segmentation, orientation mapping, binarization and minutiae extraction. Gabor filters developed to increase the image quality were used and detailed analyses based on orientation maps were performed. The developed minutiae detection model was tested on FVC2002 and FVC2004 datasets with 96.8% and 95.3% accuracy rates, respectively. The high performance it shows especially on low-resolution and distorted data reveals the robustness of the system. In addition, the user-friendly graphical interface has made the process more interactive and accessible. This study provides a reliable, flexible and high-performance solution in fingerprint analysis and makes an effective contribution to forensic applications.

References

  • A.K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity-authentication system using fingerprints. Proceedings of the IEEE, 85 (9), 1365–1388, 1997. https://doi.org/10.1109/5.628674.
  • D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of fingerprint recognition. Springer, London, 2009. https://doi.org/10.1007/978-1-84882-254-2.
  • W. Chen and Y. Gao, A Minutiae-based fingerprint matching algorithm using phase correlation, Proceeding of 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007), pp. 233-238, Glenelg, SA, Australia, 2007. https://doi.org/10.1109/DICTA.2007.4426801.
  • J. Fierrez, J. Galbally, J. Ortega-Garcia, et al., BiosecurID: a multimodal biometric database. Pattern Anal Applic 13, 235–246, 2010. https://doi.org/10.1007/s10044-009-0151-4.
  • N. Martins, J. S. Silva, A. Bernardino, Fingerprint recognition in forensic scenarios. Sensors, 24 (2), 664, 2024. https://doi.org/10.3390/s24020664.
  • A. A. Ross, A. K. Jain, K. Nandakumar, Handbook of multibiometrics. Springer, New York, 2006. https://doi.org/10.1007/0-387-33123-9.
  • D. G. Lowe, Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60 (2), 91–110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94.
  • E. Rublee, V. Rabaud, K. Konolige, et al., ORB: An efficient alternative to SIFT or SURF. Proceedings of the 2011 International Conference on Computer Vision (ICCV), pp. 2564–2571, IEEE, Barcelona, Spain, 2011. https://doi.org/10.1109/ICCV.2011.6126544.
  • L. Sha and X. Tang, Orientation-improved minutiae for fingerprint matching. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Volume 4, pp. 432–435, Los Alamitos, CA, USA, IEEE Computer Society, 2004. https://doi.org/10.1109/ICPR.2004.670.
  • H. Choi, K. Choi, J. Kim, Fingerprint matching incorporating ridge features with minutiae. IEEE Transactions on Information Forensics and Security, 6 (2), 338–345, 2011. https://doi.org/10.1109/TIFS.2010.2103940.
  • V. C. Salmento, F. Bortolozzi, R. Sabourin, Multibiometric verification using dynamic selection of multiple matchers. In Proceedings of the 14th Iberoamerican Congress on Pattern Recognition (CIARP 2009), Lecture Notes in Computer Science, 5856, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-10268-4.
  • W. Lee, S. Cho, H. Choi, J. Kim, Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners. Expert Systems with Applications, 87, 183–198, 2017. https://doi.org/10.1016/j.eswa.2017.06.019.
  • M. Sajjad, S. Khan, T. Hussain, et al., CNN-based anti-spoofing two-tier multi-factor authentication system. Pattern Recognition Letters, 126, 123-131, 2019. https://doi.org/10.1016/j.patrec.2018.02.015.
  • W. Bian, D. Xu, Q. Li, et al., A Survey of the methods on fingerprint orientation field estimation. IEEE Access, 7, 32644–32663, 2019. https://doi.org/10.1109/ACCESS.2019.2903601.
  • Y. Zhang, D. Shi, X. Zhan, et al., Slim-ResCNN: A deep residual convolutional neural network for fingerprint liveness detection. IEEE Access, 7, 91476-91487, 2019. https://doi.org/10.1109/ACCESS.2019.2927357.
  • A Muhammed and A. R. Pais, A novel fingerprint image enhancement based on super resolution. Proceeding of 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 165-170, Coimbatore, India, 2020. https://doi.org/10.1109/ICACCS48705.2020.9074196.
  • J. Engelsma, K. Cao, A. K. Jain, Learning a fixed-length fingerprint representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 6, 1981-1997, 2021. https://doi.org/10.1109/TPAMI.2019.2961349
  • A. Wahab, T. M. Khan, S. Iqbal, et al., Latent fingerprint enhancement for accurate minutiae detection. Procedia Computer Scienc, 246, 1558-1567, 2024. https://doi.org/10.1016/j.procs.2024.09.722.
  • N. Martins, J. S. Silva, A. Bernardino, Fingerprint recognition in forensic scenarios. Sensors, 24, 664,  2024. https://doi.org/10.3390/s24020664.
  • Fingerprint Verification Competition 2002, FVC2002 – Fingerprint Database, BIAS Lab, University of Bologna, 2002. http://bias.csr.unibo.it/fvc2002/, Accessed 09 August 2025.
  • Fingerprint Verification Competition 2004, FVC2004 – Fingerprint Database,” BIAS Lab, University of Bologna, 2004. http://bias.csr.unibo.it/fvc2004/, Accessed 09 August 2025.
  • R. Cappelli, D. Maio, D. Maltoni, Synthetic fingerprint database generation. Proceedings of the International Conference on Pattern Recognition, IEEE, pp. 744–747, Quebec City, Canada, 2002. https://doi.org/10.1109/ICPR.2002.1048096.
  • A.K. Jain, S. Prabhakar, L. Hong, A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (4), 348–359, 2000. https://doi.org/10.1109/34.761265.
  • A. A. Ross, A. K. Jain, K. Nandakumar, Handbook of multibiometrics. Springer, New York, 2006. https://doi.org/10.1007/0-387-33123-9.
  • A.K. Jain, A. Ross, S. Prabhakar, An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14 (1), 4–20, 2004. https://doi.org/10.1109/TCSVT.2003.818349.
  • A. Hore, D. Ziou, Image Quality Metrics: PSNR vs. SSIM. Proceedings of the 20th International Conference on Pattern Recognition, IEEE, pp. 2366–2369, Istanbul, Turkey, 2010. https://doi.org/10.1109/ICPR.2010.579.
  • Z. Wang, A.C. Bovik, H. R. Sheikh, E.P. Simoncelli, Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13 (4), 600–612, 2004. https://doi.org/10.1109/TIP.2003.819861.
  • G. Bradski, The OpenCV Library. Dr. Dobb’s Journal of Software Tools, vol. 25, no. 11, pp. 120–125, 2000. https://www.researchgate.net/publication/233950935_The_Opencv_Library , Accessed 22 May 2025.
  • C.R. Harris, K. J. Millman, S. J. van der Walt, et al., Array programming with NumPy. Nature, 585, 357–362, 2020. https://doi.org/10.1038/s41586-020-2649-2.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830, 2011. http://jmlr.org/papers/v12/pedregosa11a.html, Accessed 09 August 2025.

Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Parmak izi tanıma sistemleri, biyometrik kimlik doğrulamada güvenilirliği sayesinde adli bilişim ve siber güvenlik gibi birçok alanda önem kazanmıştır. Bu çalışma, düşük kaliteli ve bozulmuş parmak izi görüntülerinin işlenmesinde karşılaşılan zorluklara çözüm sunan bütünsel bir analiz yaklaşımı geliştirmektedir. Önerilen sistem; ön işleme, segmentasyon, yönelge haritalama, ikilileştirme ve minutiae çıkarımı gibi temel aşamalardan oluşmaktadır. Görüntü kalitesini artırmak için geliştirilmiş Gabor filtreleri kullanılmış ve yön haritalarına dayalı detaylı analizler gerçekleştirilmiştir. Geliştirilen minutiae tespit modeli, FVC2002 ve FVC2004 veri setlerinde sırasıyla %96.8 ve %95.3 doğruluk oranlarıyla test edilmiştir. Özellikle düşük çözünürlüklü ve bozulmuş verilerde gösterdiği yüksek performans, sistemin dayanıklılığını ortaya koymaktadır. Ayrıca kullanıcı dostu grafik arayüz, süreci daha etkileşimli ve erişilebilir hale getirmiştir. Bu çalışma, parmak izi analizinde güvenilir, esnek ve yüksek performanslı bir çözüm sunarak adli bilişim uygulamalarında etkili bir katkı sağlamaktadır.

Ethical Statement

Yazarların bu çalışma için beyan ettiği herhangi bir çıkar çatışması yoktur. Bu çalışma, Dr. Öğr. Üyesi Alperen Eroğlu danışmanlığında Necmettin Erbakan Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü öğrencisi Mehmet Alkaner’in yüksek lisans tezinden üretilmiştir. Çalışmamızın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumuzu beyan ederiz.

References

  • A.K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity-authentication system using fingerprints. Proceedings of the IEEE, 85 (9), 1365–1388, 1997. https://doi.org/10.1109/5.628674.
  • D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of fingerprint recognition. Springer, London, 2009. https://doi.org/10.1007/978-1-84882-254-2.
  • W. Chen and Y. Gao, A Minutiae-based fingerprint matching algorithm using phase correlation, Proceeding of 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007), pp. 233-238, Glenelg, SA, Australia, 2007. https://doi.org/10.1109/DICTA.2007.4426801.
  • J. Fierrez, J. Galbally, J. Ortega-Garcia, et al., BiosecurID: a multimodal biometric database. Pattern Anal Applic 13, 235–246, 2010. https://doi.org/10.1007/s10044-009-0151-4.
  • N. Martins, J. S. Silva, A. Bernardino, Fingerprint recognition in forensic scenarios. Sensors, 24 (2), 664, 2024. https://doi.org/10.3390/s24020664.
  • A. A. Ross, A. K. Jain, K. Nandakumar, Handbook of multibiometrics. Springer, New York, 2006. https://doi.org/10.1007/0-387-33123-9.
  • D. G. Lowe, Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60 (2), 91–110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94.
  • E. Rublee, V. Rabaud, K. Konolige, et al., ORB: An efficient alternative to SIFT or SURF. Proceedings of the 2011 International Conference on Computer Vision (ICCV), pp. 2564–2571, IEEE, Barcelona, Spain, 2011. https://doi.org/10.1109/ICCV.2011.6126544.
  • L. Sha and X. Tang, Orientation-improved minutiae for fingerprint matching. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Volume 4, pp. 432–435, Los Alamitos, CA, USA, IEEE Computer Society, 2004. https://doi.org/10.1109/ICPR.2004.670.
  • H. Choi, K. Choi, J. Kim, Fingerprint matching incorporating ridge features with minutiae. IEEE Transactions on Information Forensics and Security, 6 (2), 338–345, 2011. https://doi.org/10.1109/TIFS.2010.2103940.
  • V. C. Salmento, F. Bortolozzi, R. Sabourin, Multibiometric verification using dynamic selection of multiple matchers. In Proceedings of the 14th Iberoamerican Congress on Pattern Recognition (CIARP 2009), Lecture Notes in Computer Science, 5856, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-10268-4.
  • W. Lee, S. Cho, H. Choi, J. Kim, Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners. Expert Systems with Applications, 87, 183–198, 2017. https://doi.org/10.1016/j.eswa.2017.06.019.
  • M. Sajjad, S. Khan, T. Hussain, et al., CNN-based anti-spoofing two-tier multi-factor authentication system. Pattern Recognition Letters, 126, 123-131, 2019. https://doi.org/10.1016/j.patrec.2018.02.015.
  • W. Bian, D. Xu, Q. Li, et al., A Survey of the methods on fingerprint orientation field estimation. IEEE Access, 7, 32644–32663, 2019. https://doi.org/10.1109/ACCESS.2019.2903601.
  • Y. Zhang, D. Shi, X. Zhan, et al., Slim-ResCNN: A deep residual convolutional neural network for fingerprint liveness detection. IEEE Access, 7, 91476-91487, 2019. https://doi.org/10.1109/ACCESS.2019.2927357.
  • A Muhammed and A. R. Pais, A novel fingerprint image enhancement based on super resolution. Proceeding of 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 165-170, Coimbatore, India, 2020. https://doi.org/10.1109/ICACCS48705.2020.9074196.
  • J. Engelsma, K. Cao, A. K. Jain, Learning a fixed-length fingerprint representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 6, 1981-1997, 2021. https://doi.org/10.1109/TPAMI.2019.2961349
  • A. Wahab, T. M. Khan, S. Iqbal, et al., Latent fingerprint enhancement for accurate minutiae detection. Procedia Computer Scienc, 246, 1558-1567, 2024. https://doi.org/10.1016/j.procs.2024.09.722.
  • N. Martins, J. S. Silva, A. Bernardino, Fingerprint recognition in forensic scenarios. Sensors, 24, 664,  2024. https://doi.org/10.3390/s24020664.
  • Fingerprint Verification Competition 2002, FVC2002 – Fingerprint Database, BIAS Lab, University of Bologna, 2002. http://bias.csr.unibo.it/fvc2002/, Accessed 09 August 2025.
  • Fingerprint Verification Competition 2004, FVC2004 – Fingerprint Database,” BIAS Lab, University of Bologna, 2004. http://bias.csr.unibo.it/fvc2004/, Accessed 09 August 2025.
  • R. Cappelli, D. Maio, D. Maltoni, Synthetic fingerprint database generation. Proceedings of the International Conference on Pattern Recognition, IEEE, pp. 744–747, Quebec City, Canada, 2002. https://doi.org/10.1109/ICPR.2002.1048096.
  • A.K. Jain, S. Prabhakar, L. Hong, A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (4), 348–359, 2000. https://doi.org/10.1109/34.761265.
  • A. A. Ross, A. K. Jain, K. Nandakumar, Handbook of multibiometrics. Springer, New York, 2006. https://doi.org/10.1007/0-387-33123-9.
  • A.K. Jain, A. Ross, S. Prabhakar, An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14 (1), 4–20, 2004. https://doi.org/10.1109/TCSVT.2003.818349.
  • A. Hore, D. Ziou, Image Quality Metrics: PSNR vs. SSIM. Proceedings of the 20th International Conference on Pattern Recognition, IEEE, pp. 2366–2369, Istanbul, Turkey, 2010. https://doi.org/10.1109/ICPR.2010.579.
  • Z. Wang, A.C. Bovik, H. R. Sheikh, E.P. Simoncelli, Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13 (4), 600–612, 2004. https://doi.org/10.1109/TIP.2003.819861.
  • G. Bradski, The OpenCV Library. Dr. Dobb’s Journal of Software Tools, vol. 25, no. 11, pp. 120–125, 2000. https://www.researchgate.net/publication/233950935_The_Opencv_Library , Accessed 22 May 2025.
  • C.R. Harris, K. J. Millman, S. J. van der Walt, et al., Array programming with NumPy. Nature, 585, 357–362, 2020. https://doi.org/10.1038/s41586-020-2649-2.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830, 2011. http://jmlr.org/papers/v12/pedregosa11a.html, Accessed 09 August 2025.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Image Processing, Digital Forensics
Journal Section Research Article
Authors

Mehmet Alkaner 0000-0003-4989-2313

Alperen Eroğlu 0000-0002-1780-7025

Early Pub Date December 2, 2025
Publication Date December 4, 2025
Submission Date May 28, 2025
Acceptance Date October 8, 2025
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Alkaner, M., & Eroğlu, A. (2025). Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1707882
AMA Alkaner M, Eroğlu A. Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı. NOHU J. Eng. Sci. December 2025;15(1):1-1. doi:10.28948/ngumuh.1707882
Chicago Alkaner, Mehmet, and Alperen Eroğlu. “Yön Bilgisi Ile Güçlendirilmiş Parmak Izi Tanıma: Modüler Bir Görüntü Işleme Yaklaşımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (December 2025): 1-1. https://doi.org/10.28948/ngumuh.1707882.
EndNote Alkaner M, Eroğlu A (December 1, 2025) Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE M. Alkaner and A. Eroğlu, “Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı”, NOHU J. Eng. Sci., vol. 15, no. 1, pp. 1–1, 2025, doi: 10.28948/ngumuh.1707882.
ISNAD Alkaner, Mehmet - Eroğlu, Alperen. “Yön Bilgisi Ile Güçlendirilmiş Parmak Izi Tanıma: Modüler Bir Görüntü Işleme Yaklaşımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (December2025), 1-1. https://doi.org/10.28948/ngumuh.1707882.
JAMA Alkaner M, Eroğlu A. Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı. NOHU J. Eng. Sci. 2025;15:1–1.
MLA Alkaner, Mehmet and Alperen Eroğlu. “Yön Bilgisi Ile Güçlendirilmiş Parmak Izi Tanıma: Modüler Bir Görüntü Işleme Yaklaşımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2025, pp. 1-1, doi:10.28948/ngumuh.1707882.
Vancouver Alkaner M, Eroğlu A. Yön bilgisi ile güçlendirilmiş parmak izi tanıma: Modüler bir görüntü işleme yaklaşımı. NOHU J. Eng. Sci. 2025;15(1):1-.

download