Review
BibTex RIS Cite

Yapay zekanın süt endüstrisinde potansiyel kullanım alanları

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Gıda üreticileri, tahmine dayalı modelleme yoluyla gıda güvenliği ve kalitesi konularında proaktif bir yaklaşım benimsemektedir. Bu durum, yüksek hız ve tekrarlanabilirlik ile en doğru sonuca ulaşmayı gerektirmektedir. Bu nedenle gıda üreticileri büyük veri analizleri ile makine öğrenmesi (ML), nesnelerin interneti (IoT) ve derin öğrenme (DL) gibi modelleri kullanarak yapay zeka sistemlerini rutin üretimlerinin bir parçası haline getirmeyi hedeflemektedir. Sütün doğası gereği kolay bozulabilir olması, çiğ sütün kalitesinin nihai ürünün kalitesini doğrudan etkilemesi ve çiğ süt üretiminin ağırlıklı olarak hem dağınık hem de küçük üreticiler tarafından gerçekleştirilmesi, süt endüstrisinin hammaddeden nihai ürüne kadar disiplinli bir şekilde kalite ve gıda güvenliği konularına odaklanmasını zorunlu kılmaktadır. Bu derlemede, süt endüstrisinde kaliteyi korumak ve gıda güvenliğini sağlamak için yapay zeka modellerinden yararlanma olanakları tartışılmaktadır.

Project Number

Bulunmamaktadır

References

  • S. P. Oliver, B. Jayarao, M. and R. A. Almeida, Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Diseases, 2(2), 115-29, 2005. https://doi.org/ 10.1089/fpd.2005.2.115.
  • D. Grace, F. Wu and A. H. Havelaar, Foodborne diseases from milk and milk products in developing countries-Review of causes and health and economic implications. Journal of Dairy Science, 103(11), 9715-9729, 2020. https://doi.org/10.3168/jds.2020-18323.
  • C. Xiu and K.K. Klein, Melamine in milk products in China: Examining the factors that led to deliberate use of the contaminant. Food Policy, 35(5), 463-470, 2010. https://doi.org/10.1016/j.foodpol.2010.05.001.
  • Z. Liu, S. Wang, Y. Zhang, Y. Feng, J. Liu, and H. Zhu, Artificial intelligence in food safety: a decade review and bibliometric analysis. Foods, 12, 1242, 2023. https://doi.org/10.3390/foods12061242.
  • K. B. Chhetri, Application of artificial intelligence and machine learning in food quality control and safety assessment. Food Engineering Reviews, 16(1), 1-21, 2024. https://doi.org/10.1007/s12393-023-09363-1.
  • X. Han, Q. Liu, Y. Li, M. Zhang, K. Liu, , L.-Y. Kwok, H. Zhang and W. Zhang, Synergizing artificial intelligence and probiotics: A comprehensive review of emerging applications in health promotion and industrial innovation. Trends in Food Science and Technology, 159, 104938, 2025. https://doi.org/10.1016/j.tifs.2025.104938.
  • P. Devi, K. Subburamu,V. A. Giridhari, B. Dananjeyan and T. Maruthamuthu, Integration of AI based tools in dairy quality control: Enhancing pathogen detection efficiency. Journal of Food Measurement and Characterization, (published on-line on May 17, 2025), 2025. https://doi.org/10.1007/s11694-025-03269-8.
  • I. Moon, F. Yi and B. Javidi, Automated three-dimensional microbial sensing and recognition using digital holography and statistical sampling. Sensors 10(9), 8437–8451, 2010. https://doi.org/10.3390/s100908437.
  • T. Fukuda and O. Hasegawa, Expert system driven image processing for recognition and identifcation of microorganisms. Proceedings of International Workshop on Industrial Applications of Machine Intelligence and Vision, IEEE Japan, sayfa 33-38, Tokyo, April 1989. https://doi.org/10.1109/MIV.1989.40518.
  • S. Yeom and B. Javidi, Automatic identifcation of biological microorganisms using three-dimensional complex morphology. Journal of Biomedical Optics, 11(2), 024017, 2006. https://doi.org/ 10.1117/1.2187017.
  • P. M. Iftikhar, M. V. Kuijpers, A. Khayyat, A. Iftikhar, and Sa. M. deGouvia de, Artificial intelligence: a new paradigm. Cureus, 12(2), e7124, 2020. https://doi.org/10.7759/cureus.7124.
  • Y. Wang, Y. Feng, Z. Xiao and Y. Luo, Machine learning supported single-stranded DNA sensor array for multiple foodborne pathogenic and spoilage bacteria identification in milk. Food Chemsitry, 463, Part 2, 141115, 2025. https://doi.org/10.1016/j.foodchem.2024.141115.
  • K. L. Beck, N. Haiminen, A. Agarwal, A. P. Carrieri, M. Madgwick, J. Kelly, V. Pylro, B. Kawas, M. Wiedmann and E. Ganda, Development and evaluation of statistical and artificial intelligence approaches with microbial shotgun metagenomics data as an untargeted screening tool for use in food production. mSystems, 9(11), e-00840-24, 2024. https://doi.org/10.1128/msystems.00840-24. 
  • T. Abass, E. O. Itua, T. Bature and M. A. Eruaga, Innovative approaches to food quality control: AI and machine learning for predictive analysis. World Journal of Advanced Research and Reviews, 21(3), 823–828, 2024. https://doi.org/10.30574/wjarr.2024.21.3.0719.
  • X. Song, X. Zhang, G. Dong, H. Ding, X. Cui, Y. Han, H. Huang and L. Wang, AI in food industry automation: applications and challenges, Frontiers in Sustainable Food Systems. 9, 1575430, 2025. https://doi.org/10.3389/fsufs.2025.1575430.
  • M. Aqeel, A. Sohaib, M. Iqbal S.S. and Ullah, Milk adulteration identification using hyperspectral imaging and machine learning. Journal of Dairy Science, 108(2), 1301-1314, 2025. https://doi.org/10.3168/jds.2024-25635.
  • S. Colak, I. Uzunsoy, A. Narin and U. Duran, Adulteration detection of cow milk in buffalo milk using Fourier-transform infrared spectroscopy and artificial intelligence-based techniques. Journal of Food Composition and Analysis, 140, 107203, 2025. https://doi.org/10.1016/j.jfca.2025.107203.
  • K. Goyal, P. Kumar and K. Verma, XAI-empowered IoT multi-sensor system for real-time milk adulteration detection. Food Control, 164, 110495, 2024. https://doi.org/10.1016/j.foodcont.2024.110495.
  • R. U. Mhapsekar, L. Abraham, N. O’Shea and S. Davy, Edge-AI implementation for milk adulteration detection. IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIOT), 108-113, virtual, 2022. https://doi.org/10.1109/GCAIoT57150.2022. 10019173.
  • P. P. Lal, A. A. Prakash, A. A. Chand, K. A. Prasad, U. Mehta, M. H. Assaf, S. F. Mani and K. A. Mamun, IoT integrated fuzzy classification analysis for detecting adulterants in cow milk. Sensing and Biosensing Research, 36, 100486, 2022. https://doi.org/10.1016/j.sbsr.2022.100486.
  • R. L . Lü, H. Y. He, Z. Jia, S. Y. Wang, N. B. Cai and X. B. Wang, Application progress of spectral detection technology of melamine in food. Spectroscopy and Spectral Analysis, 42(7), 1999-2006, 2022. https://doi.org/10.3964/j.issn.1000-0593(2022)07-1999-08.
  • A. Perniciano, L. Zedda, C. Di Ruberto, B. Pes and A. Loddo, CRDet: An artificial intelligence-based framework for automated cheese ripeness assessment from digital images. IEEE/CAA Journal of Automatica Sinica, (in press), 2025. https://doi.org/10.1109/JAS.2024.125061.
  • J. Muncan, K. Tei and R. Tsenkova, Real-time monitoring of yogurt fermentation process by aquaphotomics near-ınfrared spectroscopy. Sensors, 21(1), 177, 2021. https://doi.org/10.3390/s21010177.
  • M. S. Hadi, B. S. R. Sugiono, M. A. Mizar, A. Witjoro and M. Irvan, Enhancing low-temperature long-time milk pasteurization process with a C4.5 algorithm-driven AIoT system for real-time decision-making. Journal of Food Process Engineering, 47, e14606, 2024. https://doi.org/10.1111/jfpe.14606.
  • O. Oztuna Taner and A. B. Colak, Dairy factory milk product processing and sustainable of the shelf-life extension with artificial intelligence: a model study. Frontiers in Sustainable Food Systems, 8, 1344370, 2024. https://doi.org/10.3389/fsufs.2024.1344370.
  • European Union, (EU). 2017. Welfare of cattle on dairy farms, (2025). https://op.europa.eu/en/publication-detail/-/publication/8950fa88-d651-11e7-a506-01aa75ed71a1/language-en Accessed 3 June 2025.
  • C. Frazzoli, A. Mantovani and R. Dragone, Local role of food producers’ communities for a global one-health framework: the experience of translational research in an Italian dairy chain. JACEN, 3, 14-19, 2014. https://doi.org/10.4236/jacen.2014.32B003
  • C. Frazzoli, B. Bocca and A. Mantovani, The one health perspective in trace elements biomonitoring. Journal of Toxicology and Environmental Health Part B, 18, 344-370, 2015. https://doi.org/10.1080/10937404.2015.108573.
  • G. J. Serrano-Torres, A. L. López-Naranjo, P. L. Larrea-Cuadrado and G. Mazón-Ferro, Transformation of the Dairy supply chain through artificial intelligence: A systematic review. Sustainability, 17(3), 982, 2025. https://doi.org/10.3390/su17030982.
  • M. Nagahara, S. Tatemoto, T. Ito, O. Fujimoto, T. Ono, M. Taniguchi, M. Takagi and T. Otoi, Designing a diagnostic method to predict the optimal artificial insemination timing in cows using artificial intelligence. Frontiers in Animal Sciences, 5, 1399434, 2024. https://doi.org/10.3389/fanim.2024.1399434.
  • R. A. Romadhonny, A. B. Gumelar, T. M. Fahrudin, W. P. A. Setiawan, F. D. C. Putra, D. R. Nughoro, Estrous cycle prediction of dairy cows for planned artificial insemination (AI) using multiple logistic regression. International Seminar on Application for Technology of Information and Communication (iSemantic), 157-162, Semarang, 2019. https://doi.org/10.1109/ISEMANTIC.2019.884272.
  • B. Vallejo-Cordoba, Predicting milk shelf‐life based on artificial neural networks and headspace gas chromatographic data. Journal of Food Science, 60(5), 885-888, 2006. https://doi.org/10.1111/J.1365-2621.1995.tb06253.x
  • R. Dragone, G. Grasso, G. Licciardi, D. Di Stefano and C. Frazzoli, Sensors driven system coupled with artificial intelligence for quality monitoring and HACCP in dairy production. Sensing and Bio-Sensing Research, 45, 100683, 2024. https://doi.org/10.1016/j.sbsr.2024.100683.
  • B. Özer, Yogurt Science and Technology. Sidas Press. Izmir, 2006.
  • A. Bowler, M. Pound and N. Watson, Convolutional feature extraction for process monitoring using ultrasonic sensors. Computers & Chemical Engineering, 155, 107508, 2021. https://doi.org/10.1016/j.compchemeng.2021.107508.
  • S. J.Yang, M. Bai, W. C. Liu, W. C. Li, Z. Zhong, L. Y. Kwo, G. F. Dong and Z. H. Sun, Predicting Lactobacillus delbrueckii subsp. bulgaricus-Streptococcus thermophilus interactions based on a highly accurate semi-supervised learning method. Science China-Life Sciences, 68(2), 558-574, 2025. https://doi.org/10.1007/s11427-023-2569-7.
  • H. M. Habib, R. Ismail, M. Agami A. F. and El-Yazbi, Exploring the impact of bioactive peptides from fermented milk proteins: a revew with emphasis on health implications and artificial intelligence integration. Food Chemistry, 481, 144047, 2025. https://doi.org/10.1016/j.foodchem.2025.144047.
  • K. R. Choi and S. Y. Lee, Systems metabolic engineering of microorganisms for food and cosmetics production. Nature Reviews Bioengineering, 1(11), 832–857, 2023. https://doi.org/10.1038/s44222-023-00076-y.
  • A. Das, R. N. Behera, A. Kapoor and K. Ambatipudi, The potential of metaproteomics and artificial intelligence to establish the next generation of probiotics for personalized healthcare. Journal of Agricultural and Food Chemistry, 71(46), 17528-17542 2023. https://doi.org/10.1021/acs.jafc.3c03834.
  • K. X. Bi, S. Y. Zhang, C. Zhang and T. Qui, Consumer-oriented sensory optimization of yogurt: And artificial intelligence approach. Food Control, 138, 108995, 2022. https://doi.org/10.1016/j.foodcont.2022.108995.
  • L. Zedda, A. Perniciano, A. Loddo and C. Di Ruberto, Understanding cheese ripeness:An artificial intelligence-based approach for hierarchical classification. Knowledge-Based Systems, 295, 111833, 2024. https://doi.org/10.1016/j.knosys.2024.111833.
  • A. Bosakova-Ardenska, Recent trends in computer vision for cheese quality evaluation. Engineering Proceedings, 60(1), 12, 2024. https://doi.org/ 10.3390/engproc2024060012.
  • A. Loddo, C. DiRuberto, G. Armano and A. Manconi, Automatic monitoring cheese ripeness using computer vision and artificial intelligence. IEEE Access, 10, 122612, 2022. https://doi.org/ 10.1109/ACCESS.2022.3223710.
  • Z. Zhang, J. Zhang, W. Tian, Y. Li, Y. Song and P. Zhang, Multi-objective optimization of milk powder spray drying system considering environmental impact, economy and product quality. Journal of Cleaner Production, 369, 133353, 2022. https://doi.org/10.1016/j.jclepro.2022.133353.
  • M. Mamat, F. Wong, H. T. Yew and J. A. Dargham, Estimating shelf life of packed fresh milk using odor and machine learning: A feasibility study. in: Internet of Things and Artificial Intelligence for Smart Environments. H.T. Yew, M. Mamat, J. A. Dargham, C. Seng Kheau and E. G. Moung, Eds., Springer, Singapore, pp. 143-165. 2024. https://doi.org/10.1007/978-981-97-1432-2_9.
  • P. Detopoulou, G. Voulgaridou, P. Moschos, D. Levidi, T. Anastasiou, V. Dedes, E. M. Diplari, N. Fourfouri, C. Giaginis, G. I. Panautsopoulos, S. K. Papadopoulou, 2023. Artificial intelligence, nutrition and ethical issues: a mini review. Clinical Nutrition Open Science, 50, 46-56, 2023. https://doi.org/10.1016/j.nutos.2023.07.001.
  • European Union Official Journal, Artificial Intelligence Act (Regulation (EU) 2024/1689). Published on 13 June 2024.

Potential application areas of artificial intelligence in dairy industry

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Food manufacturers are taking a proactive approach to food safety and quality issues through predictive modeling. This situation necessitates reaching the most accurate result with high speed and repeatability. Therefore, food manufacturers aim to integrate artificial intelligence systems into their routine production by utilising machine learning (ML), the Internet of Things (IoT), and deep learning (DL) through big data analysis. The fact that milk is easily spoilt due to its nature, that the quality of raw milk directly affects the quality of the final product and that raw milk production is predominantly carried out by both dispersed and small producers makes it mandatory for the dairy industry to focus on quality and food safety issues in a disciplined manner from raw materials to the end product. This review discusses the possibilities of utilising artificial intelligence models in the dairy industry to maintain quality and ensure food safety.

Project Number

Bulunmamaktadır

References

  • S. P. Oliver, B. Jayarao, M. and R. A. Almeida, Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Diseases, 2(2), 115-29, 2005. https://doi.org/ 10.1089/fpd.2005.2.115.
  • D. Grace, F. Wu and A. H. Havelaar, Foodborne diseases from milk and milk products in developing countries-Review of causes and health and economic implications. Journal of Dairy Science, 103(11), 9715-9729, 2020. https://doi.org/10.3168/jds.2020-18323.
  • C. Xiu and K.K. Klein, Melamine in milk products in China: Examining the factors that led to deliberate use of the contaminant. Food Policy, 35(5), 463-470, 2010. https://doi.org/10.1016/j.foodpol.2010.05.001.
  • Z. Liu, S. Wang, Y. Zhang, Y. Feng, J. Liu, and H. Zhu, Artificial intelligence in food safety: a decade review and bibliometric analysis. Foods, 12, 1242, 2023. https://doi.org/10.3390/foods12061242.
  • K. B. Chhetri, Application of artificial intelligence and machine learning in food quality control and safety assessment. Food Engineering Reviews, 16(1), 1-21, 2024. https://doi.org/10.1007/s12393-023-09363-1.
  • X. Han, Q. Liu, Y. Li, M. Zhang, K. Liu, , L.-Y. Kwok, H. Zhang and W. Zhang, Synergizing artificial intelligence and probiotics: A comprehensive review of emerging applications in health promotion and industrial innovation. Trends in Food Science and Technology, 159, 104938, 2025. https://doi.org/10.1016/j.tifs.2025.104938.
  • P. Devi, K. Subburamu,V. A. Giridhari, B. Dananjeyan and T. Maruthamuthu, Integration of AI based tools in dairy quality control: Enhancing pathogen detection efficiency. Journal of Food Measurement and Characterization, (published on-line on May 17, 2025), 2025. https://doi.org/10.1007/s11694-025-03269-8.
  • I. Moon, F. Yi and B. Javidi, Automated three-dimensional microbial sensing and recognition using digital holography and statistical sampling. Sensors 10(9), 8437–8451, 2010. https://doi.org/10.3390/s100908437.
  • T. Fukuda and O. Hasegawa, Expert system driven image processing for recognition and identifcation of microorganisms. Proceedings of International Workshop on Industrial Applications of Machine Intelligence and Vision, IEEE Japan, sayfa 33-38, Tokyo, April 1989. https://doi.org/10.1109/MIV.1989.40518.
  • S. Yeom and B. Javidi, Automatic identifcation of biological microorganisms using three-dimensional complex morphology. Journal of Biomedical Optics, 11(2), 024017, 2006. https://doi.org/ 10.1117/1.2187017.
  • P. M. Iftikhar, M. V. Kuijpers, A. Khayyat, A. Iftikhar, and Sa. M. deGouvia de, Artificial intelligence: a new paradigm. Cureus, 12(2), e7124, 2020. https://doi.org/10.7759/cureus.7124.
  • Y. Wang, Y. Feng, Z. Xiao and Y. Luo, Machine learning supported single-stranded DNA sensor array for multiple foodborne pathogenic and spoilage bacteria identification in milk. Food Chemsitry, 463, Part 2, 141115, 2025. https://doi.org/10.1016/j.foodchem.2024.141115.
  • K. L. Beck, N. Haiminen, A. Agarwal, A. P. Carrieri, M. Madgwick, J. Kelly, V. Pylro, B. Kawas, M. Wiedmann and E. Ganda, Development and evaluation of statistical and artificial intelligence approaches with microbial shotgun metagenomics data as an untargeted screening tool for use in food production. mSystems, 9(11), e-00840-24, 2024. https://doi.org/10.1128/msystems.00840-24. 
  • T. Abass, E. O. Itua, T. Bature and M. A. Eruaga, Innovative approaches to food quality control: AI and machine learning for predictive analysis. World Journal of Advanced Research and Reviews, 21(3), 823–828, 2024. https://doi.org/10.30574/wjarr.2024.21.3.0719.
  • X. Song, X. Zhang, G. Dong, H. Ding, X. Cui, Y. Han, H. Huang and L. Wang, AI in food industry automation: applications and challenges, Frontiers in Sustainable Food Systems. 9, 1575430, 2025. https://doi.org/10.3389/fsufs.2025.1575430.
  • M. Aqeel, A. Sohaib, M. Iqbal S.S. and Ullah, Milk adulteration identification using hyperspectral imaging and machine learning. Journal of Dairy Science, 108(2), 1301-1314, 2025. https://doi.org/10.3168/jds.2024-25635.
  • S. Colak, I. Uzunsoy, A. Narin and U. Duran, Adulteration detection of cow milk in buffalo milk using Fourier-transform infrared spectroscopy and artificial intelligence-based techniques. Journal of Food Composition and Analysis, 140, 107203, 2025. https://doi.org/10.1016/j.jfca.2025.107203.
  • K. Goyal, P. Kumar and K. Verma, XAI-empowered IoT multi-sensor system for real-time milk adulteration detection. Food Control, 164, 110495, 2024. https://doi.org/10.1016/j.foodcont.2024.110495.
  • R. U. Mhapsekar, L. Abraham, N. O’Shea and S. Davy, Edge-AI implementation for milk adulteration detection. IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIOT), 108-113, virtual, 2022. https://doi.org/10.1109/GCAIoT57150.2022. 10019173.
  • P. P. Lal, A. A. Prakash, A. A. Chand, K. A. Prasad, U. Mehta, M. H. Assaf, S. F. Mani and K. A. Mamun, IoT integrated fuzzy classification analysis for detecting adulterants in cow milk. Sensing and Biosensing Research, 36, 100486, 2022. https://doi.org/10.1016/j.sbsr.2022.100486.
  • R. L . Lü, H. Y. He, Z. Jia, S. Y. Wang, N. B. Cai and X. B. Wang, Application progress of spectral detection technology of melamine in food. Spectroscopy and Spectral Analysis, 42(7), 1999-2006, 2022. https://doi.org/10.3964/j.issn.1000-0593(2022)07-1999-08.
  • A. Perniciano, L. Zedda, C. Di Ruberto, B. Pes and A. Loddo, CRDet: An artificial intelligence-based framework for automated cheese ripeness assessment from digital images. IEEE/CAA Journal of Automatica Sinica, (in press), 2025. https://doi.org/10.1109/JAS.2024.125061.
  • J. Muncan, K. Tei and R. Tsenkova, Real-time monitoring of yogurt fermentation process by aquaphotomics near-ınfrared spectroscopy. Sensors, 21(1), 177, 2021. https://doi.org/10.3390/s21010177.
  • M. S. Hadi, B. S. R. Sugiono, M. A. Mizar, A. Witjoro and M. Irvan, Enhancing low-temperature long-time milk pasteurization process with a C4.5 algorithm-driven AIoT system for real-time decision-making. Journal of Food Process Engineering, 47, e14606, 2024. https://doi.org/10.1111/jfpe.14606.
  • O. Oztuna Taner and A. B. Colak, Dairy factory milk product processing and sustainable of the shelf-life extension with artificial intelligence: a model study. Frontiers in Sustainable Food Systems, 8, 1344370, 2024. https://doi.org/10.3389/fsufs.2024.1344370.
  • European Union, (EU). 2017. Welfare of cattle on dairy farms, (2025). https://op.europa.eu/en/publication-detail/-/publication/8950fa88-d651-11e7-a506-01aa75ed71a1/language-en Accessed 3 June 2025.
  • C. Frazzoli, A. Mantovani and R. Dragone, Local role of food producers’ communities for a global one-health framework: the experience of translational research in an Italian dairy chain. JACEN, 3, 14-19, 2014. https://doi.org/10.4236/jacen.2014.32B003
  • C. Frazzoli, B. Bocca and A. Mantovani, The one health perspective in trace elements biomonitoring. Journal of Toxicology and Environmental Health Part B, 18, 344-370, 2015. https://doi.org/10.1080/10937404.2015.108573.
  • G. J. Serrano-Torres, A. L. López-Naranjo, P. L. Larrea-Cuadrado and G. Mazón-Ferro, Transformation of the Dairy supply chain through artificial intelligence: A systematic review. Sustainability, 17(3), 982, 2025. https://doi.org/10.3390/su17030982.
  • M. Nagahara, S. Tatemoto, T. Ito, O. Fujimoto, T. Ono, M. Taniguchi, M. Takagi and T. Otoi, Designing a diagnostic method to predict the optimal artificial insemination timing in cows using artificial intelligence. Frontiers in Animal Sciences, 5, 1399434, 2024. https://doi.org/10.3389/fanim.2024.1399434.
  • R. A. Romadhonny, A. B. Gumelar, T. M. Fahrudin, W. P. A. Setiawan, F. D. C. Putra, D. R. Nughoro, Estrous cycle prediction of dairy cows for planned artificial insemination (AI) using multiple logistic regression. International Seminar on Application for Technology of Information and Communication (iSemantic), 157-162, Semarang, 2019. https://doi.org/10.1109/ISEMANTIC.2019.884272.
  • B. Vallejo-Cordoba, Predicting milk shelf‐life based on artificial neural networks and headspace gas chromatographic data. Journal of Food Science, 60(5), 885-888, 2006. https://doi.org/10.1111/J.1365-2621.1995.tb06253.x
  • R. Dragone, G. Grasso, G. Licciardi, D. Di Stefano and C. Frazzoli, Sensors driven system coupled with artificial intelligence for quality monitoring and HACCP in dairy production. Sensing and Bio-Sensing Research, 45, 100683, 2024. https://doi.org/10.1016/j.sbsr.2024.100683.
  • B. Özer, Yogurt Science and Technology. Sidas Press. Izmir, 2006.
  • A. Bowler, M. Pound and N. Watson, Convolutional feature extraction for process monitoring using ultrasonic sensors. Computers & Chemical Engineering, 155, 107508, 2021. https://doi.org/10.1016/j.compchemeng.2021.107508.
  • S. J.Yang, M. Bai, W. C. Liu, W. C. Li, Z. Zhong, L. Y. Kwo, G. F. Dong and Z. H. Sun, Predicting Lactobacillus delbrueckii subsp. bulgaricus-Streptococcus thermophilus interactions based on a highly accurate semi-supervised learning method. Science China-Life Sciences, 68(2), 558-574, 2025. https://doi.org/10.1007/s11427-023-2569-7.
  • H. M. Habib, R. Ismail, M. Agami A. F. and El-Yazbi, Exploring the impact of bioactive peptides from fermented milk proteins: a revew with emphasis on health implications and artificial intelligence integration. Food Chemistry, 481, 144047, 2025. https://doi.org/10.1016/j.foodchem.2025.144047.
  • K. R. Choi and S. Y. Lee, Systems metabolic engineering of microorganisms for food and cosmetics production. Nature Reviews Bioengineering, 1(11), 832–857, 2023. https://doi.org/10.1038/s44222-023-00076-y.
  • A. Das, R. N. Behera, A. Kapoor and K. Ambatipudi, The potential of metaproteomics and artificial intelligence to establish the next generation of probiotics for personalized healthcare. Journal of Agricultural and Food Chemistry, 71(46), 17528-17542 2023. https://doi.org/10.1021/acs.jafc.3c03834.
  • K. X. Bi, S. Y. Zhang, C. Zhang and T. Qui, Consumer-oriented sensory optimization of yogurt: And artificial intelligence approach. Food Control, 138, 108995, 2022. https://doi.org/10.1016/j.foodcont.2022.108995.
  • L. Zedda, A. Perniciano, A. Loddo and C. Di Ruberto, Understanding cheese ripeness:An artificial intelligence-based approach for hierarchical classification. Knowledge-Based Systems, 295, 111833, 2024. https://doi.org/10.1016/j.knosys.2024.111833.
  • A. Bosakova-Ardenska, Recent trends in computer vision for cheese quality evaluation. Engineering Proceedings, 60(1), 12, 2024. https://doi.org/ 10.3390/engproc2024060012.
  • A. Loddo, C. DiRuberto, G. Armano and A. Manconi, Automatic monitoring cheese ripeness using computer vision and artificial intelligence. IEEE Access, 10, 122612, 2022. https://doi.org/ 10.1109/ACCESS.2022.3223710.
  • Z. Zhang, J. Zhang, W. Tian, Y. Li, Y. Song and P. Zhang, Multi-objective optimization of milk powder spray drying system considering environmental impact, economy and product quality. Journal of Cleaner Production, 369, 133353, 2022. https://doi.org/10.1016/j.jclepro.2022.133353.
  • M. Mamat, F. Wong, H. T. Yew and J. A. Dargham, Estimating shelf life of packed fresh milk using odor and machine learning: A feasibility study. in: Internet of Things and Artificial Intelligence for Smart Environments. H.T. Yew, M. Mamat, J. A. Dargham, C. Seng Kheau and E. G. Moung, Eds., Springer, Singapore, pp. 143-165. 2024. https://doi.org/10.1007/978-981-97-1432-2_9.
  • P. Detopoulou, G. Voulgaridou, P. Moschos, D. Levidi, T. Anastasiou, V. Dedes, E. M. Diplari, N. Fourfouri, C. Giaginis, G. I. Panautsopoulos, S. K. Papadopoulou, 2023. Artificial intelligence, nutrition and ethical issues: a mini review. Clinical Nutrition Open Science, 50, 46-56, 2023. https://doi.org/10.1016/j.nutos.2023.07.001.
  • European Union Official Journal, Artificial Intelligence Act (Regulation (EU) 2024/1689). Published on 13 June 2024.
There are 47 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review
Authors

Bilgesu Bekremen 0000-0002-7858-6545

Hamdi Barbaros Özer 0000-0001-6669-0444

Project Number Bulunmamaktadır
Early Pub Date December 2, 2025
Publication Date December 4, 2025
Submission Date June 13, 2025
Acceptance Date October 3, 2025
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Bekremen, B., & Özer, H. B. (2025). Potential application areas of artificial intelligence in dairy industry. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1718941
AMA Bekremen B, Özer HB. Potential application areas of artificial intelligence in dairy industry. NOHU J. Eng. Sci. December 2025;15(1):1-1. doi:10.28948/ngumuh.1718941
Chicago Bekremen, Bilgesu, and Hamdi Barbaros Özer. “Potential Application Areas of Artificial Intelligence in Dairy Industry”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (December 2025): 1-1. https://doi.org/10.28948/ngumuh.1718941.
EndNote Bekremen B, Özer HB (December 1, 2025) Potential application areas of artificial intelligence in dairy industry. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE B. Bekremen and H. B. Özer, “Potential application areas of artificial intelligence in dairy industry”, NOHU J. Eng. Sci., vol. 15, no. 1, pp. 1–1, 2025, doi: 10.28948/ngumuh.1718941.
ISNAD Bekremen, Bilgesu - Özer, Hamdi Barbaros. “Potential Application Areas of Artificial Intelligence in Dairy Industry”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (December2025), 1-1. https://doi.org/10.28948/ngumuh.1718941.
JAMA Bekremen B, Özer HB. Potential application areas of artificial intelligence in dairy industry. NOHU J. Eng. Sci. 2025;15:1–1.
MLA Bekremen, Bilgesu and Hamdi Barbaros Özer. “Potential Application Areas of Artificial Intelligence in Dairy Industry”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2025, pp. 1-1, doi:10.28948/ngumuh.1718941.
Vancouver Bekremen B, Özer HB. Potential application areas of artificial intelligence in dairy industry. NOHU J. Eng. Sci. 2025;15(1):1-.

download