Research Article
BibTex RIS Cite

Effect of hot pressing temperature and reinforcement ratio on the properties of aluminium-B4C composites

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

In this study, the production of aluminium matrix B4C-reinforced composites by hot pressing was investigated. For this purpose, composite materials containing 5%, 10% and 15% B4C were produced by hot pressing at 500 °C and 550 °C. The produced samples were characterised by microstructure, hardness, electrical conductivity, wear and potentiodynamic polarisation analyses. It was observed that increasing the hot pressing temperature reduced the porosity and resulted in denser structures. It was determined that the reinforcement element agglomerated in the composite material containing 15% B4C. In general, it was observed that hardness and wear resistance increased with increasing reinforcement content, while electrical conductivity decreased. In terms of corrosion properties, it was concluded that the presence of 5% and 10% B4C improves corrosion resistance.

References

  • G. Tarakçı, B. Özbay Kısasöz, G. Özer, and A. Kısasöz, Corrosion and wear properties of building direction dependent as-built AlSi10Mg aluminium alloy printed by selective laser melting. Materials Chemistry and Physics, 342, 130978, 2025. https://doi.org/10.10 16/j.matchemphys.2025.130978.
  •    G. Özer, A. Kisasöz, and A. Karaaslan, Investigation of the relationship between intergranular corrosion and retrogression and reaging in the AA6063. Materials and Corrosion, 70, 2256–2265, 2019. https://doi.org/10.10 02/maco.201911100.
  •    M. Erol, A. Kısasöz, P. Yaman, S. S. Karabeyoğlu, and U. Barut, A study on high temperature dry sliding wear of AA7050-T4 and effects of the test temperature on microstructure, corrosion behavior, hardness and electrical conductivity. Materials Today Communications, 31, 103410, 2022. https://doi.org/1 0.1016/j.mtcomm.2022.103410.
  •    A. Kisasoz, Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions. Materials Testing, 60, 478-482, 2018. https://doi.org/10.313 9/120.111175.
  •    J. Hirsch, Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China, 24 1995-2002, 2014. https://doi.org/10.1016/S1003-6326(14)63305-7.
  •    M. B. A. Shuvho, M. A. Chowdhury, M. Kchaou, A. Rahman, and M. A. Islam, Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections, 28, 100442, 2020. https://doi.org/10.1016/j.cdc.2020.100442.
  •    G. Perumal, N. Senthilkumar, N. Naik, and B. Deepanraj, Comparative assessment of the mechanical, tribological, and corrosion properties of Al/SiC/Al2O3 and Al/SiC/TiO2 hybrid composites. Discover Applied Sciences, 7, 237, 2025. https://doi.org/10.1007/s42452-025-06687-x.
  •    Y. Bayrak, B. Özbay Kısasöz, G. Tarakçı, and A. Kısasöz, Characterization of Al/B4C–Y2O3 hybrid composites produced by vacuum hot pressing combined with Al2O3–Y2O3 interaction. Ceramics International, 50, 36230–36242, 2024. https:// doi.org/10.1016/j.ceramint.2024.07.007.
  •    A. Kisasoz, K. A. Guler, and A. Karaaslan, Infiltration of A6063 aluminium alloy into SiC-B4C hybrid preforms using vacuum assisted block mould investment casting technique. Transactions of Nonferrous Metals Society of China, 22, 1563-1567, 2012. https://doi.org/10.1016/S1003-6326(11)61356-3.
  • Y. T. Yao and L. Q. Chen, B4C/Al Composites Processed by Metal-assisted Pressureless Infiltration Technique and its Characterization. Materials and Manufacturing Processes, 31, 1286–1291, 2016. https://doi.org/10.1080/10426914.2 016.1140192.
  • Y. Liu, H. Peng, L. Wei, H. Peng, D. Ma, and Y. Leng, Influence of B4C Particle Size on the Microstructure and Mechanical Properties of B4C/Al Composites Fabricated by Pressureless Infiltration. Metals, 13, 1358, 2023. https://doi.org/10.3390/m et13081358.
  • G. T. Sudha, B. Stalin, M. Ravichandran, and M. Balasubramanian, Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites - A Review. Materials Today Proceedings, 22, 2582–2596, 2020. https://doi.or g/10.1016/ j.matpr.2020.03.389.
  • L. Zhang, J. Shi, C. Shen, X. Zhou, S. Peng, and X. Long, B4C-Al composites fabricated by the powder metallurgy process. Applied Sciences, 7, 1009, 2017. https://doi.org/10.3390/app7 101009.
  • G. Manohar, K. M. Mandey and S. R. Maity, characterization of boron carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques – A review. Materials Today Proceedings, 45, 6882-6888, 2021. https://doi.org/10.1016/j.ma tpr.2020.12.1087.
  • S. Özkaya and A. Çanakçı, Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling. Powder Technology, 297, 8-16, 2016. https://doi.org/10.1016/j.powtec.2016.04.004.
  • A. Javdani and A. H. Daei-Sorkhabi, Microstructural and mechanical behavior of blended powder semisolid formed Al7075/B4C composites under different experimental conditions. Transactions of Nonferrous Metals Society of China, 28, 1298-1310, 2018. https://doi.org/10.1016/S1003-6326(18)64 767-3.
  • M. Arab and M. Azadi, Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites. Materials Chemistry and Physics, 253, 123259, 2020. https://doi.org/10.101 6/j.mat chemphys.2020.123259.
  • R. Harichandran and N. Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of Civil and Mechanical Engineering, 16, 147–158, 2016. https://doi.org/10.1016/j.acme.2015.0 7.001.
  • Y. Bayrak, A. Kisasoz, and R. Sezer, Properties of Al/Y2O3 composites produced by Y2O3-Al2O3 interaction in powder metallurgy route. Materials Letters, 358, 135856, 2023. https://doi.org/10.10 16/j.matle t.2023.135856.
  • T. Etter, M. Papakyriacou, P. Schulz, and P. J. Uggowitzer, Physical properties of graphite/aluminium composites produced by gas pressure infiltration method. Carbon, 41, 1017–1024, 2003. https://d oi.org/10.1016/S0008-6223(02)00448-7.
  • M. J. Nasr Isfahani, F. Payami, M. A. Asadabad, and A. A. Shokri, Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites. Journal of Alloys and Compounds, 797, 1348–1358, 2019. https://doi.org/10.1016/j.jallcom.20 19.05.188.

Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Bu çalışmada alüminyum matrisli B4C takviyeli kompozitlerin sıcak presleme yöntemiyle üretimi araştırılmıştır. Bu amaçla 500 °C ve 550 °C’de %5, %10 ve %15 B4C içeren kompozit malzemeler sıcak presleme yöntemiyle üretilmiştir. Üretilen numuneler mikroyapı, sertlik, elektriksel iletkenlik, aşınma ve potansiyodinamik polarizasyon incelemeleriyle karakterize edilmiştir. Artan sıcak presleme işleminin gözenek oranını azalttığı ve daha yoğun yapıların oluşmasını sağladığı görülmüştür. %15 B4C içeren kompozit malzemede takviye elemanının topaklandığı belirlenmiştir. Genel olarak artan takviye elemanıyla birlikte sertliğin ve aşınma direncinin yükseldiği, elektriksel iletkenliğin ise azaldığı gözlenmiştir. Korozyon özellikleri açısından ise %5 ve %10 B4C varlığının korozyon direncini geliştirdiği sonucuna varılmıştır.

References

  • G. Tarakçı, B. Özbay Kısasöz, G. Özer, and A. Kısasöz, Corrosion and wear properties of building direction dependent as-built AlSi10Mg aluminium alloy printed by selective laser melting. Materials Chemistry and Physics, 342, 130978, 2025. https://doi.org/10.10 16/j.matchemphys.2025.130978.
  •    G. Özer, A. Kisasöz, and A. Karaaslan, Investigation of the relationship between intergranular corrosion and retrogression and reaging in the AA6063. Materials and Corrosion, 70, 2256–2265, 2019. https://doi.org/10.10 02/maco.201911100.
  •    M. Erol, A. Kısasöz, P. Yaman, S. S. Karabeyoğlu, and U. Barut, A study on high temperature dry sliding wear of AA7050-T4 and effects of the test temperature on microstructure, corrosion behavior, hardness and electrical conductivity. Materials Today Communications, 31, 103410, 2022. https://doi.org/1 0.1016/j.mtcomm.2022.103410.
  •    A. Kisasoz, Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions. Materials Testing, 60, 478-482, 2018. https://doi.org/10.313 9/120.111175.
  •    J. Hirsch, Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China, 24 1995-2002, 2014. https://doi.org/10.1016/S1003-6326(14)63305-7.
  •    M. B. A. Shuvho, M. A. Chowdhury, M. Kchaou, A. Rahman, and M. A. Islam, Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections, 28, 100442, 2020. https://doi.org/10.1016/j.cdc.2020.100442.
  •    G. Perumal, N. Senthilkumar, N. Naik, and B. Deepanraj, Comparative assessment of the mechanical, tribological, and corrosion properties of Al/SiC/Al2O3 and Al/SiC/TiO2 hybrid composites. Discover Applied Sciences, 7, 237, 2025. https://doi.org/10.1007/s42452-025-06687-x.
  •    Y. Bayrak, B. Özbay Kısasöz, G. Tarakçı, and A. Kısasöz, Characterization of Al/B4C–Y2O3 hybrid composites produced by vacuum hot pressing combined with Al2O3–Y2O3 interaction. Ceramics International, 50, 36230–36242, 2024. https:// doi.org/10.1016/j.ceramint.2024.07.007.
  •    A. Kisasoz, K. A. Guler, and A. Karaaslan, Infiltration of A6063 aluminium alloy into SiC-B4C hybrid preforms using vacuum assisted block mould investment casting technique. Transactions of Nonferrous Metals Society of China, 22, 1563-1567, 2012. https://doi.org/10.1016/S1003-6326(11)61356-3.
  • Y. T. Yao and L. Q. Chen, B4C/Al Composites Processed by Metal-assisted Pressureless Infiltration Technique and its Characterization. Materials and Manufacturing Processes, 31, 1286–1291, 2016. https://doi.org/10.1080/10426914.2 016.1140192.
  • Y. Liu, H. Peng, L. Wei, H. Peng, D. Ma, and Y. Leng, Influence of B4C Particle Size on the Microstructure and Mechanical Properties of B4C/Al Composites Fabricated by Pressureless Infiltration. Metals, 13, 1358, 2023. https://doi.org/10.3390/m et13081358.
  • G. T. Sudha, B. Stalin, M. Ravichandran, and M. Balasubramanian, Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites - A Review. Materials Today Proceedings, 22, 2582–2596, 2020. https://doi.or g/10.1016/ j.matpr.2020.03.389.
  • L. Zhang, J. Shi, C. Shen, X. Zhou, S. Peng, and X. Long, B4C-Al composites fabricated by the powder metallurgy process. Applied Sciences, 7, 1009, 2017. https://doi.org/10.3390/app7 101009.
  • G. Manohar, K. M. Mandey and S. R. Maity, characterization of boron carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques – A review. Materials Today Proceedings, 45, 6882-6888, 2021. https://doi.org/10.1016/j.ma tpr.2020.12.1087.
  • S. Özkaya and A. Çanakçı, Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling. Powder Technology, 297, 8-16, 2016. https://doi.org/10.1016/j.powtec.2016.04.004.
  • A. Javdani and A. H. Daei-Sorkhabi, Microstructural and mechanical behavior of blended powder semisolid formed Al7075/B4C composites under different experimental conditions. Transactions of Nonferrous Metals Society of China, 28, 1298-1310, 2018. https://doi.org/10.1016/S1003-6326(18)64 767-3.
  • M. Arab and M. Azadi, Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites. Materials Chemistry and Physics, 253, 123259, 2020. https://doi.org/10.101 6/j.mat chemphys.2020.123259.
  • R. Harichandran and N. Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of Civil and Mechanical Engineering, 16, 147–158, 2016. https://doi.org/10.1016/j.acme.2015.0 7.001.
  • Y. Bayrak, A. Kisasoz, and R. Sezer, Properties of Al/Y2O3 composites produced by Y2O3-Al2O3 interaction in powder metallurgy route. Materials Letters, 358, 135856, 2023. https://doi.org/10.10 16/j.matle t.2023.135856.
  • T. Etter, M. Papakyriacou, P. Schulz, and P. J. Uggowitzer, Physical properties of graphite/aluminium composites produced by gas pressure infiltration method. Carbon, 41, 1017–1024, 2003. https://d oi.org/10.1016/S0008-6223(02)00448-7.
  • M. J. Nasr Isfahani, F. Payami, M. A. Asadabad, and A. A. Shokri, Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites. Journal of Alloys and Compounds, 797, 1348–1358, 2019. https://doi.org/10.1016/j.jallcom.20 19.05.188.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Powder Metallurgy
Journal Section Research Article
Authors

Yahya Bayrak 0000-0003-3900-2807

Early Pub Date December 2, 2025
Publication Date December 4, 2025
Submission Date July 16, 2025
Acceptance Date November 10, 2025
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Bayrak, Y. (2025). Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1743839
AMA Bayrak Y. Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi. NOHU J. Eng. Sci. December 2025;15(1):1-1. doi:10.28948/ngumuh.1743839
Chicago Bayrak, Yahya. “Sıcak Presleme Yöntemiyle üretilen Alüminyum Matrisli B4C Takviyeli Kompozitlerin özelliklerine Sıcak Presleme Sıcaklığının Ve Takviye Oranının Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (December 2025): 1-1. https://doi.org/10.28948/ngumuh.1743839.
EndNote Bayrak Y (December 1, 2025) Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE Y. Bayrak, “Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi”, NOHU J. Eng. Sci., vol. 15, no. 1, pp. 1–1, 2025, doi: 10.28948/ngumuh.1743839.
ISNAD Bayrak, Yahya. “Sıcak Presleme Yöntemiyle üretilen Alüminyum Matrisli B4C Takviyeli Kompozitlerin özelliklerine Sıcak Presleme Sıcaklığının Ve Takviye Oranının Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (December2025), 1-1. https://doi.org/10.28948/ngumuh.1743839.
JAMA Bayrak Y. Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi. NOHU J. Eng. Sci. 2025;15:1–1.
MLA Bayrak, Yahya. “Sıcak Presleme Yöntemiyle üretilen Alüminyum Matrisli B4C Takviyeli Kompozitlerin özelliklerine Sıcak Presleme Sıcaklığının Ve Takviye Oranının Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2025, pp. 1-1, doi:10.28948/ngumuh.1743839.
Vancouver Bayrak Y. Sıcak presleme yöntemiyle üretilen alüminyum matrisli B4C takviyeli kompozitlerin özelliklerine sıcak presleme sıcaklığının ve takviye oranının etkisi. NOHU J. Eng. Sci. 2025;15(1):1-.

download