Research Article
BibTex RIS Cite

Investigation of the effect of various composite architectures on the aeroelastic behavior of an aircraft wing

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

This study presents a numerical investigation of the aeroelastic behavior of a composite aircraft wing. The primary objective is to evaluate the influence of fiber orientation and stacking sequence on aeroelastic instabilities, namely flutter and divergence, and to elucidate the role of structural stiffness in these phenomena. Fifteen wing configurations with distinct laminate layups were analyzed through combined structural and aerodynamic simulations. The mechanical response of each configuration was characterized by calculating the fundamental stiffness matrices—[A] extensional stiffness, [B] coupling stiffness, and [D] bending stiffness—from which the effective bending stiffness (EI) and torsional stiffness (GJ) were derived. The results reveal that ±45° laminates enhance flutter speed, whereas 45°/90° laminates increase divergence speed. These findings underscore the potential of laminate tailoring to enable the early prediction of critical aeroelastic boundaries in composite aircraft design, thereby facilitating structural optimization and improving both the efficiency and robustness of the design process.

References

  • D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge, UK: Cambridge University Press, 2011.
  •     T. A. Weisshaar, Aeroelastic tailoring – current status and future direction, Journal of Aircraft, vol. 50, no. 1, pp. 1–15, 2013. https://doi.org/10.2 514/1.C031606.
  •     M. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis. Berlin, Germany: Springer, 1999.
  •     J. R. Wright and J. E. Cooper, Introduction to Aircraft Aeroelasticity and Loads, Aerospace Series. Chichester, UK: Wiley, 2015.
  •     C. E. S. Cesnik, D. H. Hodges, and M. J. Patil, Aeroelastic Analysis of Composite Wings, 37th AIAA Structures, Structural Dynamics and Materials Conference, Salt Lake City, Apr. 1996.
  •     M. H. Shirk, T. J. Hertz, and T. A. Weisshaar, Aeroelastic tailoring – Theory, practice, and promise, Journal of Aircraft, vol. 23, no. 1, pp. 6–18, Jan. 1986. https://doi.org/10.2514/3.45260.
  •     A. D. Marano, M. Guida, T. Polito, and F. Marulo, Aeroelastic tailoring of composite wings for the Next Generation Civil Tiltrotor, Aerospace, vol. 9, no. 7, pp. 1–22, 2022. https://doi.org/10.3390/aerospace 9070335.
  •     A. Sharma, A. Karpel, R. Ajaj, and M. Garrick, Aeroelastic analysis and design of composite wings: A review, Preprints, 2024. https://doi.org/10.212 03/rs.3.rs-3901634/v1.
  •     R. M. Jones, Mechanics of Composite Materials. Boca Raton, FL: CRC Press, 2018.
  •   B. Zhang, Z. Li, H. Wu, and J. Nie, Research on damping performance and strength of the composite laminate, Scientific Reports, vol. 11, no. 1, pp. 1–12, Sept. 2021. https://doi.org/10.1038/s41598-021-97933-w.
  •   E. J. Barbero, Introduction to Composite Materials Design, 2nd ed. Boca Raton, FL, USA: CRC Press, 2010.
  •   M. R. Wisnom, Analysis of laminated composite structures, in Comprehensive Composite Materials, A. Kelly and C. Zweben, Eds., vol. 2, Oxford, UK: Elsevier, ch. 2.10, pp. 97–132, 2000.
  •   V. Giurgiutiu, Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications, 1st ed. Oxford, UK: Elsevier, ch. 3, pp. 111-277 2022.
  •   J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. Boca Raton, FL, USA: CRC Press, 2004.
  •   S. S. Vel and S. R. Maalouf, Analysis of Laminated Composite Structures: Theory and Numerics, Draft Edition 1, Last updated on Dec. 9, 2022. University of Maine Mechanical Engineering Department. https://umaine.edu/mecheng/vel/alcs-textbook/.
  •   J. A. Haught and N. T. Sivaneri, Aeroelastic Analysis of Composite Plate Wings Based on a New HSDT Finite Element—MONNA, Proceedings of the American Society for Composites – Thirty‑Eighth Technical Conference, Sep. 2023. http://dx.doi.org/10.12783/asc38/36686.
  •   P. Lancelot, Transonic Wing and Control Surface Loads Modelling for Aeroservoelastic Analysis, PhD Thesis, Delft University of Technology, May 2023. https://doi.org/10.4233/uuid:e37566e8-cb46-4f90-863d-9cfe0b634507.
  •   J. W. Edwards ve C. D. Wieseman, Flutter and Divergence Analysis Using the Generalized Aeroelastic Analysis Method, Journal of Aircraft, vol. 45, no. 3, pp. 906–915, May 2008. https://doi.org/10.2514/1.33285.
  •   M. Kameyama, Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters, Proceedings of Design & Systems Conference, vol. 13, pp. 295–298, Oct. 2003. https://doi.org/10.1299/jsmedsd.2003.13.295.
  •   NTNU, Material properties: Carbon/Epoxy(a) typical values, E₁ ≈ 130 GPa, E₂ ≈ 10 GPa, TMM4175 Material Properties, Norwegian University of Science and Technology (NTNU). https://nilspv.folk.ntnu. no/TMM4175/material-properties.html, Accessed 15 July 2025.
  •   H. Ghiasi, D. Pasini, and L. Lessard, Optimum stacking sequence design of composite materials. Part I: Constant stiffness design, Compos. Struct., vol. 90, no. 1, pp. 1–11, 2009, https://doi.org/10.1016/j.com pstruct.2009.01.006.
  •   N. Fedon, P. M. Weaver, A. Pirrera, and T. Macquart, A repair algorithm for composite laminates to satisfy lay-up design guidelines, Compos. Struct., vol. 259, Art. no. 113448, 2021, https://doi.org/10.1016/j.com pstruct.2020.113448.
  •   S. T. IJsselmuiden, M. M. Abdalla, O. Seresta, and Z. Gürdal, Multi-step blended stacking sequence design of panel assemblies with buckling constraints, Compos. Part B: Eng., vol. 40, no. 4, pp. 329–336, 2009. https://doi.org/10.1016/j.compositesb.2008.12. 002.
  •   J. D. Whitcomb, Analysis of quasi-isotropic laminates, NASA Tech. Pap., 1984.
  •   J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. Boca Raton, FL, USA: CRC Press, 2003.
  •   L. Librescu and O. S. Song, Thin-Walled Composite Beams: Theory and Application , Solid Mechanics and Its Applications, vol. 131, Dordrecht, The Netherlands: Springer, 2006. https://doi.org/10.10 07/1-4020-4203-5.

Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Bu çalışmada, kompozit malzemeden imal edilen bir uçak kanadının aeroelastik davranışı sayısal yöntemlerle analiz edilmiştir. Çalışmanın amacı, fiber yönelimi ve katman dizilimlerinin çırpınma (flutter) ve sapma (diverjans) gibi aeroelastik kararsızlıklar üzerindeki etkisini değerlendirmek ve yapısal rijitliğin aeroelastisitedeki rolünü incelemektir. Bu kapsamda, on beş farklı katman diziliminden oluşan kanat yüzeyi mimarileri için yapısal ve aerodinamik analizler gerçekleştirilmiştir. Kompozit katman dizilimlerine göre yapının mekanik davranışını ifade eden üç temel rijitlik matrisi [A] Uzama-kısalma rijitlik matrisi, [B] Bağlantı rijitlik matrisi ve [D] Eğilme rijitlik matrisi hesaplanarak EI eğilme rijitliği ve GJ burulma rijitlik değerleri türetilmiştir. Elde edilen parametreler kullanılarak yapılan sayısal analizler sonucunda, ±45° dizilim çırpınma hızını artırdığı, 45°/90° dizilimin ise sapma hızını yükselttiği tespit edilmiştir. Elde edilen bulgular, kompozit hava aracı tasarımlarında kritik aeroelastik sınırların erken safhada öngörülmesine olanak sağlayarak yapı optimizasyonunu kolaylaştıracak, böylece tasarım sürecini hızlı ve verimli bir hale getirecektir.

References

  • D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge, UK: Cambridge University Press, 2011.
  •     T. A. Weisshaar, Aeroelastic tailoring – current status and future direction, Journal of Aircraft, vol. 50, no. 1, pp. 1–15, 2013. https://doi.org/10.2 514/1.C031606.
  •     M. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis. Berlin, Germany: Springer, 1999.
  •     J. R. Wright and J. E. Cooper, Introduction to Aircraft Aeroelasticity and Loads, Aerospace Series. Chichester, UK: Wiley, 2015.
  •     C. E. S. Cesnik, D. H. Hodges, and M. J. Patil, Aeroelastic Analysis of Composite Wings, 37th AIAA Structures, Structural Dynamics and Materials Conference, Salt Lake City, Apr. 1996.
  •     M. H. Shirk, T. J. Hertz, and T. A. Weisshaar, Aeroelastic tailoring – Theory, practice, and promise, Journal of Aircraft, vol. 23, no. 1, pp. 6–18, Jan. 1986. https://doi.org/10.2514/3.45260.
  •     A. D. Marano, M. Guida, T. Polito, and F. Marulo, Aeroelastic tailoring of composite wings for the Next Generation Civil Tiltrotor, Aerospace, vol. 9, no. 7, pp. 1–22, 2022. https://doi.org/10.3390/aerospace 9070335.
  •     A. Sharma, A. Karpel, R. Ajaj, and M. Garrick, Aeroelastic analysis and design of composite wings: A review, Preprints, 2024. https://doi.org/10.212 03/rs.3.rs-3901634/v1.
  •     R. M. Jones, Mechanics of Composite Materials. Boca Raton, FL: CRC Press, 2018.
  •   B. Zhang, Z. Li, H. Wu, and J. Nie, Research on damping performance and strength of the composite laminate, Scientific Reports, vol. 11, no. 1, pp. 1–12, Sept. 2021. https://doi.org/10.1038/s41598-021-97933-w.
  •   E. J. Barbero, Introduction to Composite Materials Design, 2nd ed. Boca Raton, FL, USA: CRC Press, 2010.
  •   M. R. Wisnom, Analysis of laminated composite structures, in Comprehensive Composite Materials, A. Kelly and C. Zweben, Eds., vol. 2, Oxford, UK: Elsevier, ch. 2.10, pp. 97–132, 2000.
  •   V. Giurgiutiu, Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications, 1st ed. Oxford, UK: Elsevier, ch. 3, pp. 111-277 2022.
  •   J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. Boca Raton, FL, USA: CRC Press, 2004.
  •   S. S. Vel and S. R. Maalouf, Analysis of Laminated Composite Structures: Theory and Numerics, Draft Edition 1, Last updated on Dec. 9, 2022. University of Maine Mechanical Engineering Department. https://umaine.edu/mecheng/vel/alcs-textbook/.
  •   J. A. Haught and N. T. Sivaneri, Aeroelastic Analysis of Composite Plate Wings Based on a New HSDT Finite Element—MONNA, Proceedings of the American Society for Composites – Thirty‑Eighth Technical Conference, Sep. 2023. http://dx.doi.org/10.12783/asc38/36686.
  •   P. Lancelot, Transonic Wing and Control Surface Loads Modelling for Aeroservoelastic Analysis, PhD Thesis, Delft University of Technology, May 2023. https://doi.org/10.4233/uuid:e37566e8-cb46-4f90-863d-9cfe0b634507.
  •   J. W. Edwards ve C. D. Wieseman, Flutter and Divergence Analysis Using the Generalized Aeroelastic Analysis Method, Journal of Aircraft, vol. 45, no. 3, pp. 906–915, May 2008. https://doi.org/10.2514/1.33285.
  •   M. Kameyama, Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters, Proceedings of Design & Systems Conference, vol. 13, pp. 295–298, Oct. 2003. https://doi.org/10.1299/jsmedsd.2003.13.295.
  •   NTNU, Material properties: Carbon/Epoxy(a) typical values, E₁ ≈ 130 GPa, E₂ ≈ 10 GPa, TMM4175 Material Properties, Norwegian University of Science and Technology (NTNU). https://nilspv.folk.ntnu. no/TMM4175/material-properties.html, Accessed 15 July 2025.
  •   H. Ghiasi, D. Pasini, and L. Lessard, Optimum stacking sequence design of composite materials. Part I: Constant stiffness design, Compos. Struct., vol. 90, no. 1, pp. 1–11, 2009, https://doi.org/10.1016/j.com pstruct.2009.01.006.
  •   N. Fedon, P. M. Weaver, A. Pirrera, and T. Macquart, A repair algorithm for composite laminates to satisfy lay-up design guidelines, Compos. Struct., vol. 259, Art. no. 113448, 2021, https://doi.org/10.1016/j.com pstruct.2020.113448.
  •   S. T. IJsselmuiden, M. M. Abdalla, O. Seresta, and Z. Gürdal, Multi-step blended stacking sequence design of panel assemblies with buckling constraints, Compos. Part B: Eng., vol. 40, no. 4, pp. 329–336, 2009. https://doi.org/10.1016/j.compositesb.2008.12. 002.
  •   J. D. Whitcomb, Analysis of quasi-isotropic laminates, NASA Tech. Pap., 1984.
  •   J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. Boca Raton, FL, USA: CRC Press, 2003.
  •   L. Librescu and O. S. Song, Thin-Walled Composite Beams: Theory and Application , Solid Mechanics and Its Applications, vol. 131, Dordrecht, The Netherlands: Springer, 2006. https://doi.org/10.10 07/1-4020-4203-5.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics), Aerospace Materials, Aerospace Structures
Journal Section Research Article
Authors

Furkan Özdemir 0009-0003-8582-5131

Harun Çelik 0000-0001-5352-3428

Early Pub Date December 2, 2025
Publication Date December 4, 2025
Submission Date July 30, 2025
Acceptance Date October 6, 2025
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Özdemir, F., & Çelik, H. (2025). Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1753986
AMA Özdemir F, Çelik H. Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi. NOHU J. Eng. Sci. December 2025;15(1):1-1. doi:10.28948/ngumuh.1753986
Chicago Özdemir, Furkan, and Harun Çelik. “Farklı Kompozit Mimarilerin Uçak Kanadının Aeroelastik Davranışı üzerindeki Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (December 2025): 1-1. https://doi.org/10.28948/ngumuh.1753986.
EndNote Özdemir F, Çelik H (December 1, 2025) Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE F. Özdemir and H. Çelik, “Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi”, NOHU J. Eng. Sci., vol. 15, no. 1, pp. 1–1, 2025, doi: 10.28948/ngumuh.1753986.
ISNAD Özdemir, Furkan - Çelik, Harun. “Farklı Kompozit Mimarilerin Uçak Kanadının Aeroelastik Davranışı üzerindeki Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (December2025), 1-1. https://doi.org/10.28948/ngumuh.1753986.
JAMA Özdemir F, Çelik H. Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi. NOHU J. Eng. Sci. 2025;15:1–1.
MLA Özdemir, Furkan and Harun Çelik. “Farklı Kompozit Mimarilerin Uçak Kanadının Aeroelastik Davranışı üzerindeki Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2025, pp. 1-1, doi:10.28948/ngumuh.1753986.
Vancouver Özdemir F, Çelik H. Farklı kompozit mimarilerin uçak kanadının aeroelastik davranışı üzerindeki etkisinin incelenmesi. NOHU J. Eng. Sci. 2025;15(1):1-.

download