Research Article
BibTex RIS Cite

Determination of surface porosity ratio of aluminum composite foams

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Aluminum foam is the most widely used metallic foam, with applications in automotive, aerospace, construction, and engineering fields, due to its potential for lightweight structural components. Its mechanical properties are closely dependent on the matrix material and are influenced not only by density but also by factors such as cell junction accuracy, cell roundness, diameter distribution, and the solid fraction within the cell network. Accurate characterization of geometric features—ligaments (cross-sectional shape, diameter, length) and pores/cells (shape, diameter)—is essential for the further development of metal foams. Such information enables the effective design of technical applications, including the calculation of specific surface area, which defines the interface between solid and fluid phases, as well as mathematical modeling and input generation for finite element analyses. In this study, the surface porosity, average pore diameter, and pore count of aluminum composite foams were determined using the open-source image processing program ImageJ. Among the various image analysis methods available in the software, the Intermodes method was identified as the most reliable for evaluating surface porosity in aluminum composite foams. Using this approach, porosity ratios were measured for different specimens, and the average pore diameters and counts were calculated.

Supporting Institution

TÜBİTAK

Project Number

119M001

Thanks

This research was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) under project number 119M001.

References

  • J. Banhart, “Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Progress in Materials Science, 46, 559–632, 2001. https://doi.org/10.1016/S0079-6425(00)00002-5.
  •    L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. Cambridge, U.K.: Cambridge University Press, 1997.
  •    A. A. Gokhale, N. V. R. Kumar, B. Sudhakar, S. N. Sahu, H. Basumatary, and S. Dhara, Cellular Metals and Ceramics for Defence Applications. Defence Science Journal, 61 (6), 567–575, 2011. https://doi.org/10. 14429/dsj.61.640.
  •    F. Šimančík, Metallic foams–ultra light materials for structural applications. Inżynieria Materiałowa, 5, 823–828, 2001.
  •    A. Hassan and I. Alnaser, A Review of Different Manufacturing Methods of Metallic Foams. ACS Omega, 9, 6280–6295, 2024. https://doi.org/10.1021/ acsomega.3c08613.
  •    B. Parveez, N. Jamal, H. Anuar, Y. Ahmad, A. Aabid, and M. Baig, Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials, 15, 2022. https://doi.org/10.3390/ma15155302.
  •    G. Davies and S. Zhen, Metallic foams: their production, properties and applications. Journal of Materials Science, 18, 1899–1911, 1983. https://doi.org /10.1007/BF00554981.
  •    S. Singh and N. Bhatnagar, A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials, 25, 537–554, 2018. https://doi.org /10.1007/s10934-017-0467-1.
  •    W. E. Azzi, A Systematic Study on The Mechanical and Thermal Properties of Open Cell Metal Foams for Aerospace Applications. M.S. thesis, North Carolina State University, Raleigh, NC, USA, 2004.
  • M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide. Oxford, U.K.: Butterworth-Heinemann, 2000.
  • G. Özer, Alüminyum Esaslı Köpük Metal Üretimi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2005.
  • J. Zhang, Y. An, and H. Ma, Research Progress in the Preparation of Aluminum Foam Composite Structures. Metals, 2022. https://doi.org/10.3390/met12122047.
  • I. Orbulov and A. Szlancsik, On the Mechanical Properties of Aluminum Matrix Syntactic Foams. Advanced Engineering Materials, 20, 2018. https://doi. org/10.1002/adem.201700980.
  • M. Rakesh, A. Tewari, and S. Karagadde, Stabilization and Deformation Behaviour of In Situ Al₃Zr/AA6061 Composite Aluminium Foams. Metallurgical and Materials Transactions A, 2025. https://doi.org/10.1007 /s11661-024-07673-5.
  • Y. Wang, B. Ou, B. Niu, and P. Zhu, High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface. Surfaces and Interfaces, 2022. https://doi.org/10.1016/j.surfin.2022.101747.
  • S. Wang, K. Yang, M. Xie, J. Sha, X. Yang, and N. Zhao, Effect of carbon nanotubes content on compressive properties and deformation behaviors of aluminum matrix composite foams. Materials Science and Engineering: A, 2024. https://doi.org/10.1016/j. msea.2024.146391.
  • D. Ren, Y. Xu, W. Du, B. Wang, Y. Lin, Z. He, and Y. Chen, A Novel Sandwich Aluminum Foam Composite Reinforced with Steel Prepared by Arc Spraying. Advanced Engineering Materials, 27, 2025. https://doi. org/10.1002/adem.202402114.
  • A. Daoud, M. El-Khair, F. Fairouz, E. Mohamed, and A. Lotfy, Compressive Behavior of 7075 Al–SiO₂ Waste Particle Composite Foams Produced with Recycled Aluminum Cans. Journal of Materials Engineering and Performance, 29, 2978–2990, 2020. https://doi.org/10.1007/s11665-020-04858-y.
  • C. Kammer, Aluminium foam. TALAT Lecture 1410, Training in Aluminium Application Technologies, pp. 1–24, 1999.
  • García‑Moreno, Commercial Applications of Metal Foams: Their Properties and Production. Materials, 9 (2), 85, 2016. https://doi.org/10.3390/ma9020085.
  • M. Beer, R. Rybár, and D. Kudelas, Method of determining the essential geometric characteristics of the metal foam structure. Metalurgija, 58, 211–214, 2019.
  • V. P. Martínez, J. Torres Torres, and A. Flores Valdés, Recycling of aluminum beverage cans for metallic foams manufacturing. Journal of Porous Materials, 24, 707–712, 2017. https://doi.org/10.1007/s10934-016-0307-8.
  • M. Cardona, J. A. Isaza, J. F. Ramírez, and P. Fernández‑Morales, Pores distribution statistical analysis for metal foams obtained by casting‑dissolution process. Materia‑Rio de Janeiro, 21, 501–509, 2016. https://doi.org/10.1590/S1517-707620160002.0047.
  • S. Kim, H. J. Chung, and K. Rhee, Application of Image Processing to Predict Compressive Behavior of Aluminum Foam. Archives of Metallurgy and Materials, 61 (2), 635–640, 2016. https://doi.org/10. 1515/amm-2016-0108.
  • N. Bekoz and E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size. Materials Science and Engineering: A, 576, 82–90, 2013. https://doi.org/10.1016/j.msea.2013.04.009.
  • M. Saadatfar, F. García‑Moreno, S. Hutzler, A. P. Sheppard, M. A. Knackstedt, J. Banhart, and D. Weaire, Imaging of metallic foams using X‑ray micro‑CT. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 344, 107–112, 2009. https://doi. org/10.1016/j.colsurfa.2009.01.008.
  • L. Chica, C. Mera, L. Sepúlveda‑Cano, and A. Alzate, Porosity estimation and pore structure characterization of foamed cement paste using non‑specialized image digital processing. Materials and Structures, 55, 2022. https://doi.org/10.1617/s11527-022-02031-6.
  • C. Liu and G. Liu, Characterization of pore structure parameters of foam concrete by 3D reconstruction and image analysis. Construction and Building Materials, 120958, 2020. https://doi.org/10.1016/j.conbuildmat. 2020.120958.
  • M. Knackstedt, C. Arns, M. Saadatfar, T. Senden, A. Limaye, A. Sakellariou, A. Sheppard, R. Sok, W. Schrof, and H. Steininger, Elastic and transport properties of cellular solids derived from three‑dimensional tomographic images. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2833–2862, 2006. https:// doi.org/10.1098/rspa.2006.1657.
  • G. Petrucci, R. Scaffaro, F. Lopresti, and G. Re, A facile method to determine pore size distribution in porous scaffold by using image processing. Micron, 76, 37–45, 2015. https://doi.org/10.1016/j.micron.2015.05.001.
  • S. Gallagher, Digital Image Processing and Analysis with ImageJ. Current Protocols Essential Laboratory Techniques, 9, A.3C.1–A.3C.29, 2010. https://doi.org /10.1002/9780470089941.eta03cs9.
  • M. Abràmoff, P. Magalhães, and S. Ram, Image processing with ImageJ. Biophotonics International, 11, 36–42, 2004
  • “Espacenet Bibliographic data: Publication Number: WO2015094139. Online, Espacenet Patent Database.
  • V. Casalegno, M. Salvo, S. Rizzo, L. Goglio, O. Damiano, and M. Ferraris, Joining of carbon fibre reinforced polymer to Al‑Si alloy for space applications. International Journal of Adhesion and Adhesives, 82, 146–152, 2018. https://doi.org/10.1016/ j.ijadhadh.2018.01.009.
  • A. Şahin, Kompozit Alüminyum Köpüklerin Yapıştırma Bağlantılarında Bağlantı Dayanımını Etkileyen Parametrelerin İncelenmesi. Doktora Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • T. Fiedler, V. Vendra, and A. Öchsner, Mechanical properties and energy absorption of closed‑cell aluminum foams. Journal of Materials Science, 41 (12), 3899–3905, 2005.
  • E. Dede, E. Özdemir, and A. E. Tekkaya, Compression behavior of aluminum foam produced by powder metallurgy. Materials, 12 (6), 986, 2019.

Alüminyum kompozit köpüklerin yüzey gözeneklilik oranının belirlenmesi

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Alüminyum köpük, hafif yapısal bileşenler üretme potansiyeli nedeniyle otomotiv, havacılık, inşaat ve mühendislik alanlarında en yaygın kullanılan metalik köpüktür. Mekanik özellikleri büyük ölçüde matris malzemesine bağımlıdır ve yalnızca yoğunlukla değil, aynı zamanda hücre birleşim doğruluğu, hücre yuvarlaklığı, çap dağılımı ve hücre ağındaki katı fraksiyonu gibi faktörlerden de etkilenir. Bağlar (en kesit şekli, çap, uzunluk) ve gözenek/hücreler (şekil, çap) gibi geometrik özelliklerin doğru bir şekilde karakterize edilmesi, metalik köpüklerin geliştirilmesi açısından önemlidir. Bu bilgiler, ayrıca teknik uygulamaların etkin tasarımını sağlar; bunlar arasında katı ve akışkan fazlar arasındaki ara yüzeyi tanımlayan özgül yüzey alanının hesaplanması, matematiksel modelleme ve sonlu eleman analizleri için giriş verilerinin oluşturulması yer almaktadır. Bu çalışmada, alüminyum kompozit köpüklerin yüzey gözenekliliği, ortalama gözenek çapı ve gözenek sayısı, açık kaynaklı görüntü işleme programı ImageJ kullanılarak belirlenmiştir. Yazılımda mevcut çeşitli görüntü analiz yöntemleri arasında, alüminyum kompozit köpüklerde yüzey gözenekliliğinin değerlendirilmesi için Intermodes yöntemi en güvenilir yöntem olarak belirlenmiştir. Bu yaklaşım kullanılarak farklı örnekler için gözeneklilik oranları ölçülmüş ve ortalama gözenek çapları ile sayıları hesaplanmıştır.

Supporting Institution

TÜBİTAK

Project Number

119M001

Thanks

Bu araştırma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 119M001 numaralı proje kapsamında desteklenmiştir.

References

  • J. Banhart, “Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Progress in Materials Science, 46, 559–632, 2001. https://doi.org/10.1016/S0079-6425(00)00002-5.
  •    L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. Cambridge, U.K.: Cambridge University Press, 1997.
  •    A. A. Gokhale, N. V. R. Kumar, B. Sudhakar, S. N. Sahu, H. Basumatary, and S. Dhara, Cellular Metals and Ceramics for Defence Applications. Defence Science Journal, 61 (6), 567–575, 2011. https://doi.org/10. 14429/dsj.61.640.
  •    F. Šimančík, Metallic foams–ultra light materials for structural applications. Inżynieria Materiałowa, 5, 823–828, 2001.
  •    A. Hassan and I. Alnaser, A Review of Different Manufacturing Methods of Metallic Foams. ACS Omega, 9, 6280–6295, 2024. https://doi.org/10.1021/ acsomega.3c08613.
  •    B. Parveez, N. Jamal, H. Anuar, Y. Ahmad, A. Aabid, and M. Baig, Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials, 15, 2022. https://doi.org/10.3390/ma15155302.
  •    G. Davies and S. Zhen, Metallic foams: their production, properties and applications. Journal of Materials Science, 18, 1899–1911, 1983. https://doi.org /10.1007/BF00554981.
  •    S. Singh and N. Bhatnagar, A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials, 25, 537–554, 2018. https://doi.org /10.1007/s10934-017-0467-1.
  •    W. E. Azzi, A Systematic Study on The Mechanical and Thermal Properties of Open Cell Metal Foams for Aerospace Applications. M.S. thesis, North Carolina State University, Raleigh, NC, USA, 2004.
  • M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide. Oxford, U.K.: Butterworth-Heinemann, 2000.
  • G. Özer, Alüminyum Esaslı Köpük Metal Üretimi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2005.
  • J. Zhang, Y. An, and H. Ma, Research Progress in the Preparation of Aluminum Foam Composite Structures. Metals, 2022. https://doi.org/10.3390/met12122047.
  • I. Orbulov and A. Szlancsik, On the Mechanical Properties of Aluminum Matrix Syntactic Foams. Advanced Engineering Materials, 20, 2018. https://doi. org/10.1002/adem.201700980.
  • M. Rakesh, A. Tewari, and S. Karagadde, Stabilization and Deformation Behaviour of In Situ Al₃Zr/AA6061 Composite Aluminium Foams. Metallurgical and Materials Transactions A, 2025. https://doi.org/10.1007 /s11661-024-07673-5.
  • Y. Wang, B. Ou, B. Niu, and P. Zhu, High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface. Surfaces and Interfaces, 2022. https://doi.org/10.1016/j.surfin.2022.101747.
  • S. Wang, K. Yang, M. Xie, J. Sha, X. Yang, and N. Zhao, Effect of carbon nanotubes content on compressive properties and deformation behaviors of aluminum matrix composite foams. Materials Science and Engineering: A, 2024. https://doi.org/10.1016/j. msea.2024.146391.
  • D. Ren, Y. Xu, W. Du, B. Wang, Y. Lin, Z. He, and Y. Chen, A Novel Sandwich Aluminum Foam Composite Reinforced with Steel Prepared by Arc Spraying. Advanced Engineering Materials, 27, 2025. https://doi. org/10.1002/adem.202402114.
  • A. Daoud, M. El-Khair, F. Fairouz, E. Mohamed, and A. Lotfy, Compressive Behavior of 7075 Al–SiO₂ Waste Particle Composite Foams Produced with Recycled Aluminum Cans. Journal of Materials Engineering and Performance, 29, 2978–2990, 2020. https://doi.org/10.1007/s11665-020-04858-y.
  • C. Kammer, Aluminium foam. TALAT Lecture 1410, Training in Aluminium Application Technologies, pp. 1–24, 1999.
  • García‑Moreno, Commercial Applications of Metal Foams: Their Properties and Production. Materials, 9 (2), 85, 2016. https://doi.org/10.3390/ma9020085.
  • M. Beer, R. Rybár, and D. Kudelas, Method of determining the essential geometric characteristics of the metal foam structure. Metalurgija, 58, 211–214, 2019.
  • V. P. Martínez, J. Torres Torres, and A. Flores Valdés, Recycling of aluminum beverage cans for metallic foams manufacturing. Journal of Porous Materials, 24, 707–712, 2017. https://doi.org/10.1007/s10934-016-0307-8.
  • M. Cardona, J. A. Isaza, J. F. Ramírez, and P. Fernández‑Morales, Pores distribution statistical analysis for metal foams obtained by casting‑dissolution process. Materia‑Rio de Janeiro, 21, 501–509, 2016. https://doi.org/10.1590/S1517-707620160002.0047.
  • S. Kim, H. J. Chung, and K. Rhee, Application of Image Processing to Predict Compressive Behavior of Aluminum Foam. Archives of Metallurgy and Materials, 61 (2), 635–640, 2016. https://doi.org/10. 1515/amm-2016-0108.
  • N. Bekoz and E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size. Materials Science and Engineering: A, 576, 82–90, 2013. https://doi.org/10.1016/j.msea.2013.04.009.
  • M. Saadatfar, F. García‑Moreno, S. Hutzler, A. P. Sheppard, M. A. Knackstedt, J. Banhart, and D. Weaire, Imaging of metallic foams using X‑ray micro‑CT. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 344, 107–112, 2009. https://doi. org/10.1016/j.colsurfa.2009.01.008.
  • L. Chica, C. Mera, L. Sepúlveda‑Cano, and A. Alzate, Porosity estimation and pore structure characterization of foamed cement paste using non‑specialized image digital processing. Materials and Structures, 55, 2022. https://doi.org/10.1617/s11527-022-02031-6.
  • C. Liu and G. Liu, Characterization of pore structure parameters of foam concrete by 3D reconstruction and image analysis. Construction and Building Materials, 120958, 2020. https://doi.org/10.1016/j.conbuildmat. 2020.120958.
  • M. Knackstedt, C. Arns, M. Saadatfar, T. Senden, A. Limaye, A. Sakellariou, A. Sheppard, R. Sok, W. Schrof, and H. Steininger, Elastic and transport properties of cellular solids derived from three‑dimensional tomographic images. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2833–2862, 2006. https:// doi.org/10.1098/rspa.2006.1657.
  • G. Petrucci, R. Scaffaro, F. Lopresti, and G. Re, A facile method to determine pore size distribution in porous scaffold by using image processing. Micron, 76, 37–45, 2015. https://doi.org/10.1016/j.micron.2015.05.001.
  • S. Gallagher, Digital Image Processing and Analysis with ImageJ. Current Protocols Essential Laboratory Techniques, 9, A.3C.1–A.3C.29, 2010. https://doi.org /10.1002/9780470089941.eta03cs9.
  • M. Abràmoff, P. Magalhães, and S. Ram, Image processing with ImageJ. Biophotonics International, 11, 36–42, 2004
  • “Espacenet Bibliographic data: Publication Number: WO2015094139. Online, Espacenet Patent Database.
  • V. Casalegno, M. Salvo, S. Rizzo, L. Goglio, O. Damiano, and M. Ferraris, Joining of carbon fibre reinforced polymer to Al‑Si alloy for space applications. International Journal of Adhesion and Adhesives, 82, 146–152, 2018. https://doi.org/10.1016/ j.ijadhadh.2018.01.009.
  • A. Şahin, Kompozit Alüminyum Köpüklerin Yapıştırma Bağlantılarında Bağlantı Dayanımını Etkileyen Parametrelerin İncelenmesi. Doktora Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • T. Fiedler, V. Vendra, and A. Öchsner, Mechanical properties and energy absorption of closed‑cell aluminum foams. Journal of Materials Science, 41 (12), 3899–3905, 2005.
  • E. Dede, E. Özdemir, and A. E. Tekkaya, Compression behavior of aluminum foam produced by powder metallurgy. Materials, 12 (6), 986, 2019.
There are 37 citations in total.

Details

Primary Language English
Subjects Image Processing, Material Design and Behaviors
Journal Section Research Article
Authors

Anıl Şahin 0000-0002-2623-1195

Nilhan Ürkmez Taşkın 0000-0003-2251-3889

Vedat Taşkın 0000-0002-3013-2317

Project Number 119M001
Early Pub Date December 2, 2025
Publication Date December 4, 2025
Submission Date August 26, 2025
Acceptance Date October 15, 2025
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Şahin, A., Ürkmez Taşkın, N., & Taşkın, V. (2025). Determination of surface porosity ratio of aluminum composite foams. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1772605
AMA Şahin A, Ürkmez Taşkın N, Taşkın V. Determination of surface porosity ratio of aluminum composite foams. NOHU J. Eng. Sci. December 2025;15(1):1-1. doi:10.28948/ngumuh.1772605
Chicago Şahin, Anıl, Nilhan Ürkmez Taşkın, and Vedat Taşkın. “Determination of Surface Porosity Ratio of Aluminum Composite Foams”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (December 2025): 1-1. https://doi.org/10.28948/ngumuh.1772605.
EndNote Şahin A, Ürkmez Taşkın N, Taşkın V (December 1, 2025) Determination of surface porosity ratio of aluminum composite foams. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE A. Şahin, N. Ürkmez Taşkın, and V. Taşkın, “Determination of surface porosity ratio of aluminum composite foams”, NOHU J. Eng. Sci., vol. 15, no. 1, pp. 1–1, 2025, doi: 10.28948/ngumuh.1772605.
ISNAD Şahin, Anıl et al. “Determination of Surface Porosity Ratio of Aluminum Composite Foams”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (December2025), 1-1. https://doi.org/10.28948/ngumuh.1772605.
JAMA Şahin A, Ürkmez Taşkın N, Taşkın V. Determination of surface porosity ratio of aluminum composite foams. NOHU J. Eng. Sci. 2025;15:1–1.
MLA Şahin, Anıl et al. “Determination of Surface Porosity Ratio of Aluminum Composite Foams”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2025, pp. 1-1, doi:10.28948/ngumuh.1772605.
Vancouver Şahin A, Ürkmez Taşkın N, Taşkın V. Determination of surface porosity ratio of aluminum composite foams. NOHU J. Eng. Sci. 2025;15(1):1-.

download