Research Article
BibTex RIS Cite

MATLAB/Simulink ortamında hibrit MPPT yöntemlerinin performans karşılaştırması: kısmi gölgeleme durumları için bir yaklaşım

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

Bu makale, kısmi gölgeleme koşullarında fotovoltaik (FV) sistemler için yeni bir hibrit maksimum güç noktası izleyicisi (MGNİ) tekniği önermektedir. Önerilen yöntem, Artımlı İletkenlik ve Parçacık Sürüsü Optimizasyonu MGNİ tekniklerine dayanmaktadır. Sunulan hibrit yaklaşımın MATLAB/Simulink’te değerlendirilmesinde farklı ışınım seviyeleri kullanılmıştır. Önerilen yaklaşımla karşılaştırmak için hem Sabit Voltaj-Parçacık Sürüsü Optimizasyonu hibrit MPPT hem de Tepe Tırmanış-Parçacık Sürüsü Optimizasyonu hibrit MPPT teknikleri kullanılmıştır. Geleneksel algoritmalar ile doğa esinli algoritma olan PSO algoritmasını birleştiren hibrit yöntemler geliştirilerek algoritmaların avantajlarından faydalanılmıştır. Simülasyon sonuçlarında, kısmi gölgeleme durumlarında sunulan MPPT tekniğinin, izleme doğruluğunun yüksek, verimliliğinin %98.60, ortalama çıkış gücünün 23.063 kW, maksimum güç noktasına ulaşma süresinin 0.001 saniye ve güç dalgalanmasının 0.3 kW olduğu görülmüştür. Sonuç olarak, önerilen yöntem diğer hibrit algoritmalara göre en iyi sonuçları vermiş olup, diğer hibrit algoritmalardan daha iyi performans göstermektedir.

References

  • P. K. Tawalare, Optimizing photovoltaic conversion of solar energy. AIP Advances, 11, 100701, 1-31, 2021. https://doi.org/10.1063/5.0064202.
  •     A. E. Hammoumi, S. Chtita, S. Motahhir, and A. E. Ghzizal, Solar PV energy: from material to use, and the most commonly used techniques to maximize the power output of PV systems: a focus on solar trackers and floating solar panels. Energy Reports, 8, 11992-12010, 2022. https://doi.org/10.1016/j.egyr.2022.09.054.
  •     A. Awasthi, A. K. Shukla, M. Manohar S. R., C. Dondariya, K. N. Shukla, D. Porwal, and G. Richhariya, Review on sun tracking technology in solar PV system. Energy Reports, 6, 392-405, 2020.https://doi.org/10.1 016/j.egyr.2020.02.004.
  •     N. Kant and P. Singh, Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceedings, 56, 100701, 3460-3470, 2022. https://doi. org/10.1016/j.matpr.2021.11.116.
  •     H. H. Pourasl, R. V. Barenji, and V. M. Khojastehnezhad, Solar energy status in the world: a comprehensive review. Energy Reports, 10, 3474-3493, 2023. https://doi.org/10.1016/j.egyr.2023.10.022.
  •     M. V. Dambhare, B. Butey, and S. V. Moharil, Solar photovoltaic technology: a review of different types of solar cells and its future trends. Journal of Physics: Conference Series, 1913, 012053, 2021. https://doi.org/ 10.1088/1742-6596/1913/1/012053.
  •     T. Sutikno, W. Arsadiando, A. Wangsupphaphol, A. Yudhana, and M. Facta, A review of recent advances on hybrid energy storage system for solar photovoltaics power generation. IEEE Access, 10, 42346-42364, 2022. https://doi.org/10.1109/ACCESS.2022.3165798.
  •     R. A. M. Lameirinhas, J. P. N. Torres, and J. P. D. M. Cunha, A photovoltaic technology review: history, fundamentals and applications. Energies, 15, 1823, 1-44, 2022. https://doi.org/10.3390/en15051823.
  •     R. B. Roy, M. D. Rokonuzzaman, N. Amin, M. K. Mishu, S. Alahakoon, N. Mithulananthan, M. Shakeri, and J. Pasupuleti, A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system. IEEE Access, 9, 1823, 102137-44, 2021. https://doi.org/10.1109/ACCESS.2021.3096864.
  •   K. Jha and A. G. Shaik, A comprehensive review of power quality mitigation in the scenario of solar PV integration into utility grid. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 3, 2023. https://doi.org/doi.org/10.1016/j.prime.2022.100103.
  •   S. Lidaighbi, M. Elyaqouti, D. B. Hmamou, D. Saadaoui, K. Assalaou, and E. Arjdal, A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. Energy Conversion and Management: X, 15, 100234, 1-14, 2022. https:// doi.org/10.1016/j.ecmx.2022.100234.
  •   D. Sharma, R. Mehra, and B. Raj, Comparative analysis of photovoltaic technologies for high efficiency solar cell design. Superlattices and Microstructures, 153, 106861, 1-11, 2021. https://doi.org/10.1016/j.Spmi.202 1.106861.
  •   N. Koshkarbay, K. K. Mohammed, S. Mekhilef, N. Kuttybay, D. Almen, A. Saymbetov, and M. Nurgaliyev, Improved MPPT technology for PV systems using social spider optimization (SSO): efficient handling of partial shading and load variations. Electric Power Systems Research, 247, 111822, 1-12, 2025. https:// doi.org/10.1016/j.epsr.2025.111822.
  •   N. Sridhar and K. S. Kumar, Integrated control of hybrid PV-wind energy systems using crayfish-optimized neuro-fuzzy inference and a trans Z-source QSEPIC converter. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2025, 1-28, 2025. https://doi.org/10.1007/s40998-025-00873-8.
  •   K. Krishnaram, M. Rajakumaran, S. Senthilkumar, S. P. Mangaiyarkarasi, and R. G. Raj, A novel hybrid MPPT technique for a PV system operated under partial shading conditions with three phase interleaved boost converter. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2025, 1-19, 2025. https://doi.org/10.1007/s40998-025-00814-5.
  •   J. P. Ram, D. S. Pillai, A. M. Y. M. Ghias, and N. Rajasekar, Performance enhancement of solar PV systems applying P&O assisted flower pollination algorithm (FPA). Solar Energy, 199, 214-229, 2020. https://doi.org/10.1016/j.solener.2020.02.019.
  •   J. Aguila-Leon, C. Vargas-Salgado, C. Chinas-Palacios, and D. Diaz-Bello, Solar photovoltaic maximum power point tracking controller optimization using grey wolf optimizer: a performance comparison between bio-inspired and traditional algorithms. Expert Systems with Applications, 211, 118700, 1-22, 2023. https://doi.org/10.1016/j.eswa.2022.118700.
  •   F. Z. Moustaine, L. Elmahni, H. Belghiti, Y. E. A. Idrissi, and A. Hani, A novel MPPT approach based on dichotomous search for solar PV systems: design, implementation, and performance evaluation under variable climatic conditions. Arabian Journal for Science and Engineering, 2025, 1-20, 2025. https://doi.org/10.1007/s13369-025-10502-5.
  •   M. Yaghoubi, M. Eslami, M. Noroozi, H. Mohammadi, O. Kamari, and S. Palani, Modified salp swarm optimization for parameter estimation of solar PV models. IEEE Access, 10, 110181-110194, 2022. https://doi.org/10.1109/ACCESS.2022.3213746.
  •   W. Long, S. Cai, J. Jiao, M. Xu, and T. Wu, A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243, 1-14, 2020. https://doi.org/ 10.1016/j.enconman.2019.112243.
  •   S. M. M. H. S. Aboutorabi and M. Sarvi, A new maximum power point tracking with a combined particle swarm optimization-biogeography‐based optimization algorithm for photovoltaic system. Energy Science & Engineering, 13(7), 3714-3726, 2025. https://doi.org/10.1002/ese3.70130.
  •   C. Mai, L. Zhang, X. Chao, X. Hu, X. Wei, and J. Li, A novel MPPT technology based on dung beetle optimization algorithm for PV systems under complex partial shade conditions. Scientific Reports, 14, 6471, 1-23, 2024. https://doi.org/10.1038/s41598-024-57268-8.
  •   M. V. D. Rocha, L. P. Sampaio, and S. A. O. D. Silva, Comparative analysis of MPPT algorithms based on bat algorithm for PV systems under partial shading condition. Sustainable Energy Technologies and Assessments, 40, 100761, 1-14, 2020. https://doi.org/ 10.1016/j.seta.2020.100761.
  •   S. Reddy, S. M. Shridhar, and M. V. Krishna, Design and implementation of MPPT solar charge controller using hill climbing algorithm. Proceedings of 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1-6, Ballari, India, 2024.
  •   S. Duman, H. T. Kahraman, Y. Sonmez, U. Guvenc, M. Kati, and S. Aras, A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems. Engineering Applications of Artificial Intelligence, 111,2022.104763. 104763, 1-31, 2022. https://doi.org/10.1016/j.engappai.
  •   S. Manna, D. K. Singh, A. K. Akella, H. Kotb, K. M. AboRas, H. M. Zawbaa, and S. Kamel, Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Reports, 9, 1818-1829, 2023. https://doi.org/10.1016/j.egyr.2022.12.152.
  •   R. I. Yuwanda, E. Prasetyono, and R. P. Eviningsih, Constant power generation using modified MPPT P&O to overcome overvoltage on solar power plants. Proceedings of 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 1-6, Surabaya, Indonesia, 2020.
  •   M. N. Dinesh and M. Eti, Optimized incremental conductance MPPT for grid-connected PV systems with battery and supercapacitor integration. Proceedings of 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), pp. 1-6, Bengaluru, India, 2024.
  •   P. Manoharan, U. Subramaniam, T. S. Babu, S. Padmanaban, J. B. Holm-Nielsen, M. Mitolo, and S. Ravichandran, Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Systems Journal, 15(2), 3024-3035, 2021. https://doi.org/10. 1109/JSYST.2020.3003255.
  •   I. Anshory, J. Jamaaluddin, A. Wisaksono, I. Sulistiyowati, Hindarto, B. S. Rintyarna, A. Fudholi, Y. A. Rahman, and K. Sopian, Optimization DC-DC boost converter of BLDC motor drive by solar panel using PID and firefly algorithm. Results in Engineering, 21, 101727, 1-10,7 2024. https://doi.org/10.1016/j.rineng.20 23.10172
  •   A. Raj and R. P. Praveen, Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications. Ain Shams Engineering Journal, 13, 101617, 1-9, 2022. https:// doi.org/10.1016/j.asej.2021.10.012.
  •   K. S. Faraj and J. F. Hussein, Analysis and comparison of DC-DC boost converter and interleaved DC-DC boost converter. Engineering and Technology Journal, 38 (05), 622-635, 2020. https://doi.org/10.30684/etj.v3 8i5A.291.
  •   C. Yanarates and Z. Zhou, Design and cascade PI controller-based robust model reference adaptive control of DC-DC boost converter. IEEE Access, 10, 44909-44922, 2022. https://doi.org/10.1109/ACCESS. 2022.3169591.
  •   A. Daraz, A. Basit, and G. Zhang, Performance analysis of PID controller and fuzzy logic controller for DC-DC boostconverter. PLoS ONE, 18 (10), 1-18, 2023. https://doi.org/10.1371/journal.pone.0281122.
  •   B. K. Uzundağ, Design of a hybrid MPPT method for PV systems under partial shading conditions. Master Thesis, Cukurova University, Adana, TR, 2024.
  •   A. E. Mallahi and H. Mharzi, An maximum power point tracking algorithm for photovoltaic power systems using the particle swarm optimization technique. Proceedings of 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1-8, Fez, Morocco, 2025.
  •   H. E. Hammedi, J. Chrouta, H. Khaterchi, and A. Zaafouri, Analyzing and comparative study of the efficiency of maximum power point tracking (MPPT) techniques in photovoltaic systems. Proceedings of 2023 IEEE Third International Conference on Signal, Control and Communication (SCC), pp. 1-6, Hammamet, Tunisia, 2023.
  •   H. E. Hammedi, J. Chrouta, H. Khaterchi, and A. Zaafouri, Comparative study of MPPT algorithms: P&O, INC, and PSO for PV system optimization. Proceedings of 2023 9th International Conference on Control, Decision and Information Technologies, pp. 1-6, Rome, Italy, 2023.
  •   A. J. Alrubaie, M. Salem, K. B. Hamad, A. Asmeida, M. Kamarol, and Y. B. Yahmed, Enhance hill climbing algorithm for fast scanning detection under dynamic irradiation. Proceedings of 2025 7th Global Power, Energy and Communication Conference (IEEE GPECOM2025), pp. 1-6, Bochum, Germany, 2025.
  •   N. Akoubi, J. B. Salem, and L. E. Amraoui, Contribution on the combination of artificial neural network and incremental conductance method to MPPT control approach. Proceedings of 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pp. 1-6, Hammamet, Tunisia, 2022.

Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation

Year 2026, Volume: 15 Issue: 1, 1 - 1

Abstract

This paper proposes a novel hybrid maximum power point tracking (MPPT) technique for photovoltaic (PV) systems under partial shading situations. The proposed method is based on Incremental Conductance and Particle Swarm Optimization MPPT techniques. Different irradiance levels have been used to evaluate the presented hybrid approach in MATLAB/Simulink. Both the Constant Voltage-Particle Swarm Optimization hybrid MPPT and the Hill Climbing-Particle Swarm Optimization hybrid MPPT techniques have been used for comparison with the proposed approach. Hybrid methods that combine traditional algorithms with the nature-inspired PSO algorithm have been developed to utilize the advantages of the algorithms. Simulation results show that the presented MPPT technique has high tracking accuracy, 98.60% efficiency, average output power of 23.063 kW, time to reach the maximum power point of 0.001 seconds, and power ripple of 0.3 kW under partial shading conditions. As a result, the proposed method gives the best results compared to other hybrid algorithms and outperforms other hybrid algorithms.

References

  • P. K. Tawalare, Optimizing photovoltaic conversion of solar energy. AIP Advances, 11, 100701, 1-31, 2021. https://doi.org/10.1063/5.0064202.
  •     A. E. Hammoumi, S. Chtita, S. Motahhir, and A. E. Ghzizal, Solar PV energy: from material to use, and the most commonly used techniques to maximize the power output of PV systems: a focus on solar trackers and floating solar panels. Energy Reports, 8, 11992-12010, 2022. https://doi.org/10.1016/j.egyr.2022.09.054.
  •     A. Awasthi, A. K. Shukla, M. Manohar S. R., C. Dondariya, K. N. Shukla, D. Porwal, and G. Richhariya, Review on sun tracking technology in solar PV system. Energy Reports, 6, 392-405, 2020.https://doi.org/10.1 016/j.egyr.2020.02.004.
  •     N. Kant and P. Singh, Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceedings, 56, 100701, 3460-3470, 2022. https://doi. org/10.1016/j.matpr.2021.11.116.
  •     H. H. Pourasl, R. V. Barenji, and V. M. Khojastehnezhad, Solar energy status in the world: a comprehensive review. Energy Reports, 10, 3474-3493, 2023. https://doi.org/10.1016/j.egyr.2023.10.022.
  •     M. V. Dambhare, B. Butey, and S. V. Moharil, Solar photovoltaic technology: a review of different types of solar cells and its future trends. Journal of Physics: Conference Series, 1913, 012053, 2021. https://doi.org/ 10.1088/1742-6596/1913/1/012053.
  •     T. Sutikno, W. Arsadiando, A. Wangsupphaphol, A. Yudhana, and M. Facta, A review of recent advances on hybrid energy storage system for solar photovoltaics power generation. IEEE Access, 10, 42346-42364, 2022. https://doi.org/10.1109/ACCESS.2022.3165798.
  •     R. A. M. Lameirinhas, J. P. N. Torres, and J. P. D. M. Cunha, A photovoltaic technology review: history, fundamentals and applications. Energies, 15, 1823, 1-44, 2022. https://doi.org/10.3390/en15051823.
  •     R. B. Roy, M. D. Rokonuzzaman, N. Amin, M. K. Mishu, S. Alahakoon, N. Mithulananthan, M. Shakeri, and J. Pasupuleti, A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system. IEEE Access, 9, 1823, 102137-44, 2021. https://doi.org/10.1109/ACCESS.2021.3096864.
  •   K. Jha and A. G. Shaik, A comprehensive review of power quality mitigation in the scenario of solar PV integration into utility grid. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 3, 2023. https://doi.org/doi.org/10.1016/j.prime.2022.100103.
  •   S. Lidaighbi, M. Elyaqouti, D. B. Hmamou, D. Saadaoui, K. Assalaou, and E. Arjdal, A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. Energy Conversion and Management: X, 15, 100234, 1-14, 2022. https:// doi.org/10.1016/j.ecmx.2022.100234.
  •   D. Sharma, R. Mehra, and B. Raj, Comparative analysis of photovoltaic technologies for high efficiency solar cell design. Superlattices and Microstructures, 153, 106861, 1-11, 2021. https://doi.org/10.1016/j.Spmi.202 1.106861.
  •   N. Koshkarbay, K. K. Mohammed, S. Mekhilef, N. Kuttybay, D. Almen, A. Saymbetov, and M. Nurgaliyev, Improved MPPT technology for PV systems using social spider optimization (SSO): efficient handling of partial shading and load variations. Electric Power Systems Research, 247, 111822, 1-12, 2025. https:// doi.org/10.1016/j.epsr.2025.111822.
  •   N. Sridhar and K. S. Kumar, Integrated control of hybrid PV-wind energy systems using crayfish-optimized neuro-fuzzy inference and a trans Z-source QSEPIC converter. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2025, 1-28, 2025. https://doi.org/10.1007/s40998-025-00873-8.
  •   K. Krishnaram, M. Rajakumaran, S. Senthilkumar, S. P. Mangaiyarkarasi, and R. G. Raj, A novel hybrid MPPT technique for a PV system operated under partial shading conditions with three phase interleaved boost converter. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2025, 1-19, 2025. https://doi.org/10.1007/s40998-025-00814-5.
  •   J. P. Ram, D. S. Pillai, A. M. Y. M. Ghias, and N. Rajasekar, Performance enhancement of solar PV systems applying P&O assisted flower pollination algorithm (FPA). Solar Energy, 199, 214-229, 2020. https://doi.org/10.1016/j.solener.2020.02.019.
  •   J. Aguila-Leon, C. Vargas-Salgado, C. Chinas-Palacios, and D. Diaz-Bello, Solar photovoltaic maximum power point tracking controller optimization using grey wolf optimizer: a performance comparison between bio-inspired and traditional algorithms. Expert Systems with Applications, 211, 118700, 1-22, 2023. https://doi.org/10.1016/j.eswa.2022.118700.
  •   F. Z. Moustaine, L. Elmahni, H. Belghiti, Y. E. A. Idrissi, and A. Hani, A novel MPPT approach based on dichotomous search for solar PV systems: design, implementation, and performance evaluation under variable climatic conditions. Arabian Journal for Science and Engineering, 2025, 1-20, 2025. https://doi.org/10.1007/s13369-025-10502-5.
  •   M. Yaghoubi, M. Eslami, M. Noroozi, H. Mohammadi, O. Kamari, and S. Palani, Modified salp swarm optimization for parameter estimation of solar PV models. IEEE Access, 10, 110181-110194, 2022. https://doi.org/10.1109/ACCESS.2022.3213746.
  •   W. Long, S. Cai, J. Jiao, M. Xu, and T. Wu, A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243, 1-14, 2020. https://doi.org/ 10.1016/j.enconman.2019.112243.
  •   S. M. M. H. S. Aboutorabi and M. Sarvi, A new maximum power point tracking with a combined particle swarm optimization-biogeography‐based optimization algorithm for photovoltaic system. Energy Science & Engineering, 13(7), 3714-3726, 2025. https://doi.org/10.1002/ese3.70130.
  •   C. Mai, L. Zhang, X. Chao, X. Hu, X. Wei, and J. Li, A novel MPPT technology based on dung beetle optimization algorithm for PV systems under complex partial shade conditions. Scientific Reports, 14, 6471, 1-23, 2024. https://doi.org/10.1038/s41598-024-57268-8.
  •   M. V. D. Rocha, L. P. Sampaio, and S. A. O. D. Silva, Comparative analysis of MPPT algorithms based on bat algorithm for PV systems under partial shading condition. Sustainable Energy Technologies and Assessments, 40, 100761, 1-14, 2020. https://doi.org/ 10.1016/j.seta.2020.100761.
  •   S. Reddy, S. M. Shridhar, and M. V. Krishna, Design and implementation of MPPT solar charge controller using hill climbing algorithm. Proceedings of 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1-6, Ballari, India, 2024.
  •   S. Duman, H. T. Kahraman, Y. Sonmez, U. Guvenc, M. Kati, and S. Aras, A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems. Engineering Applications of Artificial Intelligence, 111,2022.104763. 104763, 1-31, 2022. https://doi.org/10.1016/j.engappai.
  •   S. Manna, D. K. Singh, A. K. Akella, H. Kotb, K. M. AboRas, H. M. Zawbaa, and S. Kamel, Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Reports, 9, 1818-1829, 2023. https://doi.org/10.1016/j.egyr.2022.12.152.
  •   R. I. Yuwanda, E. Prasetyono, and R. P. Eviningsih, Constant power generation using modified MPPT P&O to overcome overvoltage on solar power plants. Proceedings of 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 1-6, Surabaya, Indonesia, 2020.
  •   M. N. Dinesh and M. Eti, Optimized incremental conductance MPPT for grid-connected PV systems with battery and supercapacitor integration. Proceedings of 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), pp. 1-6, Bengaluru, India, 2024.
  •   P. Manoharan, U. Subramaniam, T. S. Babu, S. Padmanaban, J. B. Holm-Nielsen, M. Mitolo, and S. Ravichandran, Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Systems Journal, 15(2), 3024-3035, 2021. https://doi.org/10. 1109/JSYST.2020.3003255.
  •   I. Anshory, J. Jamaaluddin, A. Wisaksono, I. Sulistiyowati, Hindarto, B. S. Rintyarna, A. Fudholi, Y. A. Rahman, and K. Sopian, Optimization DC-DC boost converter of BLDC motor drive by solar panel using PID and firefly algorithm. Results in Engineering, 21, 101727, 1-10,7 2024. https://doi.org/10.1016/j.rineng.20 23.10172
  •   A. Raj and R. P. Praveen, Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications. Ain Shams Engineering Journal, 13, 101617, 1-9, 2022. https:// doi.org/10.1016/j.asej.2021.10.012.
  •   K. S. Faraj and J. F. Hussein, Analysis and comparison of DC-DC boost converter and interleaved DC-DC boost converter. Engineering and Technology Journal, 38 (05), 622-635, 2020. https://doi.org/10.30684/etj.v3 8i5A.291.
  •   C. Yanarates and Z. Zhou, Design and cascade PI controller-based robust model reference adaptive control of DC-DC boost converter. IEEE Access, 10, 44909-44922, 2022. https://doi.org/10.1109/ACCESS. 2022.3169591.
  •   A. Daraz, A. Basit, and G. Zhang, Performance analysis of PID controller and fuzzy logic controller for DC-DC boostconverter. PLoS ONE, 18 (10), 1-18, 2023. https://doi.org/10.1371/journal.pone.0281122.
  •   B. K. Uzundağ, Design of a hybrid MPPT method for PV systems under partial shading conditions. Master Thesis, Cukurova University, Adana, TR, 2024.
  •   A. E. Mallahi and H. Mharzi, An maximum power point tracking algorithm for photovoltaic power systems using the particle swarm optimization technique. Proceedings of 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1-8, Fez, Morocco, 2025.
  •   H. E. Hammedi, J. Chrouta, H. Khaterchi, and A. Zaafouri, Analyzing and comparative study of the efficiency of maximum power point tracking (MPPT) techniques in photovoltaic systems. Proceedings of 2023 IEEE Third International Conference on Signal, Control and Communication (SCC), pp. 1-6, Hammamet, Tunisia, 2023.
  •   H. E. Hammedi, J. Chrouta, H. Khaterchi, and A. Zaafouri, Comparative study of MPPT algorithms: P&O, INC, and PSO for PV system optimization. Proceedings of 2023 9th International Conference on Control, Decision and Information Technologies, pp. 1-6, Rome, Italy, 2023.
  •   A. J. Alrubaie, M. Salem, K. B. Hamad, A. Asmeida, M. Kamarol, and Y. B. Yahmed, Enhance hill climbing algorithm for fast scanning detection under dynamic irradiation. Proceedings of 2025 7th Global Power, Energy and Communication Conference (IEEE GPECOM2025), pp. 1-6, Bochum, Germany, 2025.
  •   N. Akoubi, J. B. Salem, and L. E. Amraoui, Contribution on the combination of artificial neural network and incremental conductance method to MPPT control approach. Proceedings of 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pp. 1-6, Hammamet, Tunisia, 2022.
There are 40 citations in total.

Details

Primary Language English
Subjects Photovoltaic Power Systems
Journal Section Research Article
Authors

Oğuzhan Timur 0000-0002-6537-7840

Bayram Kaan Uzundağ 0000-0002-3650-0336

Early Pub Date December 2, 2025
Publication Date December 4, 2025
Submission Date September 17, 2025
Acceptance Date October 25, 2025
Published in Issue Year 2026 Volume: 15 Issue: 1

Cite

APA Timur, O., & Uzundağ, B. K. (2025). Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1785695
AMA Timur O, Uzundağ BK. Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation. NOHU J. Eng. Sci. December 2025;15(1):1-1. doi:10.28948/ngumuh.1785695
Chicago Timur, Oğuzhan, and Bayram Kaan Uzundağ. “Performance Comparison of Hybrid MPPT Methods in MATLAB Simulink Environment: An Approach for Partial Shading Situation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (December 2025): 1-1. https://doi.org/10.28948/ngumuh.1785695.
EndNote Timur O, Uzundağ BK (December 1, 2025) Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE O. Timur and B. K. Uzundağ, “Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation”, NOHU J. Eng. Sci., vol. 15, no. 1, pp. 1–1, 2025, doi: 10.28948/ngumuh.1785695.
ISNAD Timur, Oğuzhan - Uzundağ, Bayram Kaan. “Performance Comparison of Hybrid MPPT Methods in MATLAB Simulink Environment: An Approach for Partial Shading Situation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (December2025), 1-1. https://doi.org/10.28948/ngumuh.1785695.
JAMA Timur O, Uzundağ BK. Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation. NOHU J. Eng. Sci. 2025;15:1–1.
MLA Timur, Oğuzhan and Bayram Kaan Uzundağ. “Performance Comparison of Hybrid MPPT Methods in MATLAB Simulink Environment: An Approach for Partial Shading Situation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2025, pp. 1-1, doi:10.28948/ngumuh.1785695.
Vancouver Timur O, Uzundağ BK. Performance comparison of hybrid MPPT methods in MATLAB/Simulink environment: An approach for partial shading situation. NOHU J. Eng. Sci. 2025;15(1):1-.

download