On Anomaly Detection for Autonomous Transfer Vehicles in Smart Factories
Year 2024,
, 208 - 227, 31.12.2024
Özlem Örnek
,
Efnan Şora Günal
,
Ahmet Yazici
Abstract
Today, autonomous transfer vehicles (ATVs) have important roles in many smart factories. Therefore, flawless and uninterrupted operation of ATVs is required for the sake of effective production in smart factories. For this reason, it is important to detect anomalies (or, abnormalities) regarding ATVs during the operation. Therefore, this study aims to detect anomalies regarding ATVs so that possible losses during production can be prevented. For this purpose, two novel methods are proposed to detect anomalies for ATVs. The first method employs exhaustive feature selection to obtain the optimal subset of features for detecting anomalies. The other method utilizes a 2-stage hybrid approach for anomaly detection. Four types of anomalies (overdue pick-up delivery activity, unexpected pedestrian density, unexpected vehicle slow-down, and unexpected vehicle behavior) are considered for this work. During the experimental work, a test environment has been established for simulating a smart factory. The experimental results indicate that the first method provides a higher accuracy whereas the second one offers a better false-negative rate in detecting anomalies regarding ATVs.
Ethical Statement
This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK), Contract No 116E731, project title: “Development of Autonomous Transport Vehicles and Human-Machine / Machine-Machine Interfaces for Smart Factories" and the Scientific and Technical Research Council of Turkey (TUBITAK), Program Name 2209-B - Undergraduate Thesis Support Program for Industrial Oriented, project title: “Anomaly Detection for Autonomous Transporter Vehicles in Smart Factories”.
Supporting Institution
Scientific and Technical Research Council of Turkey (TUBITAK)
Project Number
(TUBITAK), Sözleşme No 116E731
References
- Barria, J. A. and Thajchayapong, S. (2011), Detection and classification of traffic anomalies using microscopic traffic variables, IEEE transactions on intelligent transportation systems, 12(3), 695-704.
- Barros, R. C., De Carvalho, A. C. and Freitas, A. A. (2015), Automatic design of decision-tree induction algorithms, Springer International Publishing, Germany.
- Breiman, L. (2001), Random forests, Machine learning, Kluwer Academic Publishers, Netherlands, 45(1), 5-32, 2001.
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., (1983), Classification and regression trees. Routledge, New York.
- Chandola, V., Banerjee, A. and Kumar, V. (2009), Anomaly detection: A survey, ACM computing surveys (CSUR), 41(3), 1-58.
- Chen, L., Cao, Y. and Ji, R. (2010), Automatic incident detection algorithm based on support vector machine, In 2010 Sixth International Conference on Natural Computation , 2, 864-866, IEEE.
- Chen, S. and Wang, W. (2009), Decision tree learning for freeway automatic incident detection, Expert systems with applications, 36(2), 4101-4105.
- Chlyah, M., Dardor, M. and Boumhidi, J. (2016), Multi-agent system based on support vector machine for incident detection in urban roads, In 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA),1-6, IEEE.
- Değırmencı, E., Örnek, Ö. and Yazici, A. (2020), Learning Intelligent Factory Traffic Characteristics and Anomali Detection with Contextual Multi-Arm Slot Machine, In 2020 28th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE.
ElSahly, O. and Abdelfatah, A. (2023), An incident detection model using random forest classifier, Smart Cities, 6(4), 1786-1813.
Gakis, E., Kehagias, D. and Tzovaras, D. (2014), Mining traffic data for road incidents detection, In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 930-935, IEEE.
- Hodge, V. and Austin, J. (2004), A survey of outlier detection methodologies, Artificial intelligence review, 22, 85-126.
- Jiang, G., Niu, S., Li, Q., Chang, A. and Jiang, H. (2010), Automated incident detection algorithms for urban expressway, In 2010 2nd International Conference on Advanced Computer Control, 3, 70-74, IEEE.
- Kinoshita, A., Takasu, A. and Adachi, J. (2014), Real-time traffic incident detection using probe-car data on the Tokyo Metropolitan Expressway, In 2014 IEEE International Conference on Big Data (Big Data), 43-45, IEEE.
- La-inchua, J., Chivapreecha, S. and Thajchayapong, S. (2013), A new system for traffic incident detection using fuzzy logic and majority voting, In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 1-5, IEEE.
- Landwehr, N., Hall, M. and Frank, E. (2005), Logistic model trees, Machine learning, 59, 161-205.
- Lasi, H., Fettke, P., Kemper, H. G., Feld, T. and Hoffmann, M. (2014), Industry 4.0, Business and information systems engineering, 6, 239-242.
- Liu, Q., Lu, J., Chen, S. and Zhao, K. (2014), Multiple Naïve bayes classifiers ensemble for traffic incident detection, Mathematical Problems in Engineering.
- Lu, J., Liu, Q., Yuan, L., and Chen, S. (2014), Grafted Decision Tree for Freeway Incident Detection, In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, 467-477.
- Maimon, O. Z., and Rokach, L. (2014), Data mining with decision trees: theory and applications, 81, Second edition, 328, World Scientific Publishing Co., Inc., USA.
- Min, Z., Yanlei, L., Dihua, S. and Senlin, C. (2017), Highway traffic abnormal state detection based on PCA-GA-SVM algorithm, In 2017 29th Chinese Control And Decision Conference (CCDC), 2824-2829, IEEE.
- Ohe, I., Kawashima, H., Kojima, M., and Kaneko, Y. (1995), A method for automatic detection of traffic incidents using neural networks, In Pacific Rim TransTech Conference, 1995 Vehicle Navigation and Information Systems Conference Proceedings, 6th International VNIS, A Ride into the Future, 231-235, IEEE.
- Örnek, Ö., Gülbandılar, E. and Yazıcı, A. (2020). Akıllı fabrikalardaki otonom taşiyicilar için bulanik mantik tabanli anomali tespiti, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(1), 53-61.
- Örnek, Ö., Vatan, S., Sarıoğlu, S., and Yazıcı, A. (2018), Trafik Ağlarında Anomali Tespiti, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 26(3), 132-138.
- Örnek, Ö., Vatan, S., Sarıoğlu, S. andYazıcı, A. (2018), Anomaly detection for autonomous transfer vehicles in smart factories, In 2018 6th International Conference on Control Engineering and Information Technology (CEIT), 1-5, IEEE.
- Pan, B. and Wu, H. (2017), Urban traffic incident detection with mobile sensors based on SVM, In 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, IEEE.
- Payne, H. J. and Tignor, S. C. (1978), Freeway incident-detection algorithms based on decision trees with states, Transportation Research Record, (682).
- Raiyn, J. and Toledo, T. (2014), Real-time road traffic anomaly detection, Journal of Transportation Technologies, 4(03), 256.
- Srinivasan, D., Cheu, R. L., and Poh, Y. P. (2001), Hybrid fuzzy logic-genetic algorithm technique for automated detection of traffic incidents on freeways, In ITSC 2001, 2001 IEEE Intelligent Transportation Systems, Proceedings (Cat. No. 01TH8585), 352-357, IEEE.
- Xie, T., Shang, Q. and Yu, Y. (2022). Automated Traffic Incident Detection: Coping With Imbalanced and Small Datasets, IEEE Access, 10, 35521-35540.
- Zhang, Z., Lin, X. and Hu, B. (2011), Algorithm design of traffic incident automatic detection based on mobile detection, In Proceedings of 2011 IEEE International Conference on Service Operations, Logistics and Informatics, 331-335, IEEE.
- Zhou, Z. and Zhou, L. Y. (2010), An automatic incident of freeway detection algorithm based on support vector machine, In 2010 International Symposium on Intelligence Information Processing and Trusted Computing, 543-546, IEEE.
- Zhu, C., Guo, Z. and Ke, J. (2021), Advanced fuzzy-logic-based traffic incident detection algorithm, Advances in Fuzzy Systems, 1-11.
- Zhu, Q., Qin, A. K., Abeysekara, P., Dia, H. and Grzybowska, H. (2024), Decentralised Traffic Incident Detection via Network Lasso, arXiv preprint arXiv:2402.18167.
Akıllı Fabrikalarda Otonom Taşıyıcı Araçlarında Anomali Tespiti
Year 2024,
, 208 - 227, 31.12.2024
Özlem Örnek
,
Efnan Şora Günal
,
Ahmet Yazici
Abstract
Günümüzde otonom taşıyıcı araçların (OTA) birçok akıllı fabrikada önemli rolleri var. Bu nedenle akıllı fabrikalarda etkin üretim için OTA'ların kusursuz ve kesintisiz çalışması gerekmektedir. Bunu sağlamak için OTA'lara ilişkin anomalilerin (veya anormalliklerin) operasyon sırasında tespit edilmesi önemlidir. Bu amaçla bu çalışmada OTA'lara ilişkin anormalliklerin tespit edilerek üretim sırasında olası kayıpların önlenmesi amaçlanmaktadır. OTA'lardaki anomalilerin tespiti için iki yöntem önerilmiştir. İlk yöntem, anomalilerin tespiti için en uygun özellik alt kümesini elde etmek amacıyla kapsamlı özellik seçimini kullanır. Diğer yöntemde anomali tespiti için iki aşamalı hibrit yaklaşım kullanılır. Bu çalışma için dört tür anomali (gecikmiş teslim alma faaliyeti, beklenmeyen yaya yoğunluğu, beklenmeyen araç yavaşlaması ve beklenmeyen araç davranışı) dikkate alınmıştır. Deneysel çalışma sırasında akıllı fabrikanın simüle edilebilmesi için bir test ortamı oluşturulmuştur. Deneysel sonuçlar, OTA’lara ilişkin anomalilerin tespitinde birinci yöntemin daha yüksek doğruluk sağladığını, ikincisinin ise daha iyi bir yanlış negatif oranı sunduğunu göstermektedir.
Project Number
(TUBITAK), Sözleşme No 116E731
References
- Barria, J. A. and Thajchayapong, S. (2011), Detection and classification of traffic anomalies using microscopic traffic variables, IEEE transactions on intelligent transportation systems, 12(3), 695-704.
- Barros, R. C., De Carvalho, A. C. and Freitas, A. A. (2015), Automatic design of decision-tree induction algorithms, Springer International Publishing, Germany.
- Breiman, L. (2001), Random forests, Machine learning, Kluwer Academic Publishers, Netherlands, 45(1), 5-32, 2001.
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., (1983), Classification and regression trees. Routledge, New York.
- Chandola, V., Banerjee, A. and Kumar, V. (2009), Anomaly detection: A survey, ACM computing surveys (CSUR), 41(3), 1-58.
- Chen, L., Cao, Y. and Ji, R. (2010), Automatic incident detection algorithm based on support vector machine, In 2010 Sixth International Conference on Natural Computation , 2, 864-866, IEEE.
- Chen, S. and Wang, W. (2009), Decision tree learning for freeway automatic incident detection, Expert systems with applications, 36(2), 4101-4105.
- Chlyah, M., Dardor, M. and Boumhidi, J. (2016), Multi-agent system based on support vector machine for incident detection in urban roads, In 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA),1-6, IEEE.
- Değırmencı, E., Örnek, Ö. and Yazici, A. (2020), Learning Intelligent Factory Traffic Characteristics and Anomali Detection with Contextual Multi-Arm Slot Machine, In 2020 28th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE.
ElSahly, O. and Abdelfatah, A. (2023), An incident detection model using random forest classifier, Smart Cities, 6(4), 1786-1813.
Gakis, E., Kehagias, D. and Tzovaras, D. (2014), Mining traffic data for road incidents detection, In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 930-935, IEEE.
- Hodge, V. and Austin, J. (2004), A survey of outlier detection methodologies, Artificial intelligence review, 22, 85-126.
- Jiang, G., Niu, S., Li, Q., Chang, A. and Jiang, H. (2010), Automated incident detection algorithms for urban expressway, In 2010 2nd International Conference on Advanced Computer Control, 3, 70-74, IEEE.
- Kinoshita, A., Takasu, A. and Adachi, J. (2014), Real-time traffic incident detection using probe-car data on the Tokyo Metropolitan Expressway, In 2014 IEEE International Conference on Big Data (Big Data), 43-45, IEEE.
- La-inchua, J., Chivapreecha, S. and Thajchayapong, S. (2013), A new system for traffic incident detection using fuzzy logic and majority voting, In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 1-5, IEEE.
- Landwehr, N., Hall, M. and Frank, E. (2005), Logistic model trees, Machine learning, 59, 161-205.
- Lasi, H., Fettke, P., Kemper, H. G., Feld, T. and Hoffmann, M. (2014), Industry 4.0, Business and information systems engineering, 6, 239-242.
- Liu, Q., Lu, J., Chen, S. and Zhao, K. (2014), Multiple Naïve bayes classifiers ensemble for traffic incident detection, Mathematical Problems in Engineering.
- Lu, J., Liu, Q., Yuan, L., and Chen, S. (2014), Grafted Decision Tree for Freeway Incident Detection, In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, 467-477.
- Maimon, O. Z., and Rokach, L. (2014), Data mining with decision trees: theory and applications, 81, Second edition, 328, World Scientific Publishing Co., Inc., USA.
- Min, Z., Yanlei, L., Dihua, S. and Senlin, C. (2017), Highway traffic abnormal state detection based on PCA-GA-SVM algorithm, In 2017 29th Chinese Control And Decision Conference (CCDC), 2824-2829, IEEE.
- Ohe, I., Kawashima, H., Kojima, M., and Kaneko, Y. (1995), A method for automatic detection of traffic incidents using neural networks, In Pacific Rim TransTech Conference, 1995 Vehicle Navigation and Information Systems Conference Proceedings, 6th International VNIS, A Ride into the Future, 231-235, IEEE.
- Örnek, Ö., Gülbandılar, E. and Yazıcı, A. (2020). Akıllı fabrikalardaki otonom taşiyicilar için bulanik mantik tabanli anomali tespiti, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(1), 53-61.
- Örnek, Ö., Vatan, S., Sarıoğlu, S., and Yazıcı, A. (2018), Trafik Ağlarında Anomali Tespiti, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 26(3), 132-138.
- Örnek, Ö., Vatan, S., Sarıoğlu, S. andYazıcı, A. (2018), Anomaly detection for autonomous transfer vehicles in smart factories, In 2018 6th International Conference on Control Engineering and Information Technology (CEIT), 1-5, IEEE.
- Pan, B. and Wu, H. (2017), Urban traffic incident detection with mobile sensors based on SVM, In 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, IEEE.
- Payne, H. J. and Tignor, S. C. (1978), Freeway incident-detection algorithms based on decision trees with states, Transportation Research Record, (682).
- Raiyn, J. and Toledo, T. (2014), Real-time road traffic anomaly detection, Journal of Transportation Technologies, 4(03), 256.
- Srinivasan, D., Cheu, R. L., and Poh, Y. P. (2001), Hybrid fuzzy logic-genetic algorithm technique for automated detection of traffic incidents on freeways, In ITSC 2001, 2001 IEEE Intelligent Transportation Systems, Proceedings (Cat. No. 01TH8585), 352-357, IEEE.
- Xie, T., Shang, Q. and Yu, Y. (2022). Automated Traffic Incident Detection: Coping With Imbalanced and Small Datasets, IEEE Access, 10, 35521-35540.
- Zhang, Z., Lin, X. and Hu, B. (2011), Algorithm design of traffic incident automatic detection based on mobile detection, In Proceedings of 2011 IEEE International Conference on Service Operations, Logistics and Informatics, 331-335, IEEE.
- Zhou, Z. and Zhou, L. Y. (2010), An automatic incident of freeway detection algorithm based on support vector machine, In 2010 International Symposium on Intelligence Information Processing and Trusted Computing, 543-546, IEEE.
- Zhu, C., Guo, Z. and Ke, J. (2021), Advanced fuzzy-logic-based traffic incident detection algorithm, Advances in Fuzzy Systems, 1-11.
- Zhu, Q., Qin, A. K., Abeysekara, P., Dia, H. and Grzybowska, H. (2024), Decentralised Traffic Incident Detection via Network Lasso, arXiv preprint arXiv:2402.18167.