Antik çağdan beri varlığı bilinen statik elektrik 1880’de New York’ta üretilen elektrik ile farklı bir anlam kazanarak insan hayatının vazgeçilmez bir unsuru olmuştur. Günümüzde, temel ihtiyaç alanına girmiş olan elektriğin üretiminden dağıtımına kadar önceleri devlet tekeliyle gerçekleştirilse de özellikle 1980’lı yıllardan itibaren elektrik piyasası serbestleştirilmeye başlanarak rekabetçi bir yapıya dönüşmesi amaçlanmıştır. Serbestleşme adımları başta Şili olmak üzere, İngiltere, Avustralya, Yeni Zelanda ve Baltık ülkelerinde gerçekleşmiş ve günümüzde de bu dönüşüm süreci devam etmektedir. Ülkemizde ise elektrik piyasasındaki serbestleşme çalışmaları tam olarak 2000’li yıllarda gerçekleşmeye başlamıştır. 2015 yılında EPDK’dan aldığı piyasa işletim lisansı ile Enerji Piyasaları İşletme Anonim Şirketi (EPİAŞ) faaliyete geçerek elektrik piyasasının serbestleştirilmesinde önemli bir adım atılmıştır. Bu çalışmada, EPİAŞ tarafından işletilmekte olan Gün Öncesi Piyasası’nda belirlenen saatlik Piyasa Takas Fiyatının (PTF) tahmin edilmesi amaçlanmıştır. PTF’nin geçmiş değerlerinin ve gün öncesi piyasasında oluşan işlem hacminin PTF tahminindeki başarısı araştırılmıştır. Tahmin yöntemi olarak, makine öğrenmesi yöntemlerinden rassal orman regresyonu ve destek vektör regresyonu kullanılmıştır. Analiz sonucunda, makine öğrenmesi yöntemlerinin tahmin performanslarının karşılaştırılmasında literatürde sıklıkla kullanılan RMSE, MAE ve MAPE kriterlerine göre rassal orman regresyon yöntemi ile gerçekleştirilen ve işlem hacminin de dahil olduğu değişken grubu PTF’yi en iyi tahmin eden model (RFR-2.grup) olmuştur. Bu çalışma ile işlem hacminin PTF için önemli bir değişken olduğu belirlenmiş olup PTF tahmin çalışmalarında diğer yöntemlere göre görece daha az kullanılan rassal orman regresyonunda bu yöntemler kadar önemli olduğu görülmüştür.
Destek Vektör Regresyonu Gün Öncesi Piyasası Makine Öğrenmesi Piyasa Takas Fiyatı Random Forest
Electricity known as static electricity until nineteenth century took on a new meaning with it was generated in New York in 1880. Electricity have been an indispensable instrument for human life. Initially, governments undertook the electricity process from generating to distribution. However, in 1980’s, also in Turkey at the beginning of the 2000’s, countries such as Chile, England, Australia started to liberalize their electricity markets for competition. This paper aims to predict hourly Market Clearing Price (MCP) announcing in Day Ahead Market being operated by Turkish Energy Exchange (EXIST) with market operating licence dated from 2015. It is researched that lagged values of MCP and trade value of day ahead market how prediction success on MCP. As prediction method, random forest and support vector machine of machine learning methods was used. Analysis period involve 1 Jan 2019 00:00 and 10 Mar 2020 23:00 and consist of 10440 data divided into two subset as training set (%84) and test set (%16). K-fold Cross-validation method is used for describing best parameter. Analysis was implemented in R program with caret and e1071 package. As a result of the analysis, according to the RMSE, MAPE, MAE using frequently in literature for comparing forecast performance, the best method and the best variable group which predict MCP is respectively random forest regression and the group including trade value. Therefore, this paper demonstrated that trade value is important variable for MCP and random forest is important method just as other methods used prediction of MCP.
Day Ahead Market Machine Learning Market Clearing Price Random Forest Support Vector Regression
Primary Language | Turkish |
---|---|
Subjects | Statistics |
Journal Section | Articles |
Authors | |
Publication Date | June 30, 2021 |
Published in Issue | Year 2021 |