Nanoparticle-Enhanced Lubricants for Improved Friction and Wear Performance: A Critical Review
Yıl 2025,
Cilt: 6 Sayı: 1, 13 - 21, 30.06.2025
M. Salih Gül
,
Safa Polat
Öz
Nanoparticles have emerged as promising additives in lubricating oils, offering potential solutions to reduce friction and wear in mechanical systems operating under demanding conditions. Recent studies have demonstrated that the inclusion of nanoscale materials in lubricants can significantly improve tribological performance through mechanisms such as surface film formation and interaction at the microstructural level. Two-dimensional materials such as graphene are reported to reduce the coefficient of friction and wear scar diameter by ~ 40% and 30%, respectively, while three-dimensional nanoparticles such as Al₂O₃ reduce to coefficient of friction value by ~ 15%. However, despite the growing body of research in this field, many studies focus on limited nanoparticle types or do not systematically examine the influence of synthesis methods and dispersion behaviour on overall performance. A lack of comprehensive comparisons across particle types, processing routes, and operating conditions hinders the development of optimized formulations for industrial applications. This review addresses these gaps by analysing recent advances in nanoparticleenhanced lubricants, with a focus on the relationships between synthesis techniques (sol-gel, hydrothermal, chemical reduction), tribological mechanism, and performance outcome. The literature shows that nanoparticles can reduce wear and prolong component life by minimising direct contact and changing surface interactions. Considering these benefits, nanoparticle types, hybrid structures, and functional integration into lubricant systems should be studied for wider and more efficient applications.
Kaynakça
-
Boruah, U., Mohan, B., Choudhury, N. D., & Chowdhury, D. (2025). Surface-Modified Graphitic Carbon Nitride as a Lubricant Additive in Bio-Based Oil. ACS Applied Nano Materials, 8(11), 5430–5443. doi:10.1021/acsanm.4c07072
-
Cetin, M. H., & Kabave Kilincarslan, S. (2020). Effects of cutting fluids with nano-silver and borax additives on milling performance of aluminium alloys. Journal of Manufacturing Processes, 50, 170–182. doi:10.1016/j.jmapro.2019.12.042
-
Cetin, M. H., Kesen, A., Korkmaz, S., & Kabave Kilincarslan, S. (2020). Performance evaluation of the nano-silver added vegetable-oil-based cutting fluid in drilling process. Surface Topography: Metrology and Properties, 8(2), 025029. doi:10.1088/2051-672X/ab96dc
-
Chen, S., Liu, W., & Yu, L. (1998). Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear, 218(2), 153–158. doi:10.1016/S0043-1648(98)00220-8
-
Eswaraiah, V., Sankaranarayanan, V., & Ramaprabhu, S. (2011). Graphene-Based Engine Oil Nanofluids for Tribological Applications. ACS Applied Materials \& Interfaces, 3(11), 4221–4227. doi:10.1021/am200851z
-
Findik, F. (2014). Latest progress on tribological properties of industrial materials. Materials \& Design, 57, 218–244. doi:10.1016/j.matdes.2013.12.028
-
Gul, M. S., Demirsöz, R., Kabave Kilincarslan, S., Polat, R., & Cetin, M. H. (2024). Effect of Impact Angle and Speed, and Weight Abrasive Concentration on AISI 1015 and 304 Steel Exposed to Erosive Wear. Journal of Materials Engineering and Performance, 1–19. doi:10.1007/S11665-023-09117-4/FIGURES/11
-
Gul, M. S., Gokkaya, H., Kondul, B., & Cetin, M. H. (2022). Makine Konstrüksiyonunda Kullanılabilirlik için Hastelloy C-22 Süper Alaşımının Aşınma Direncinin Kriyojenik İşlem ile Etkileşiminin İncelenmesi. Konya Journal of Engineering Sciences, 10(1), 175–188. doi:10.36306/konjes.1024523
-
Gul, M. S., Polat, S., Cetin, M. H., Kabave Kilincarslan, S., & Polat, R. (2025). The Influence of 2D g-C3N4, MXene, and Fe2O3 Additives on Tribofilm Formation in Mechanical Interfaces. Journal of Tribology, 1–36. doi:10.1115/1.4068562
-
Guzman Borda, F. L., Ribeiro de Oliveira, S. J., Seabra Monteiro Lazaro, L. M., & Kalab Leiróz, A. J. (2018). Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribology International, 117, 52–58. doi:10.1016/j.triboint.2017.08.012
-
Hernandez Battez, A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3–4), 256–263. doi:10.1016/J.WEAR.2005.10.001
-
Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., … Kim, S. H. (2011). Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. Journal of Mechanical Science and Technology, 25(11), 2853–2857. doi:10.1007/s12206-011-0724-1
-
Ingole, S., Charanpahari, A., Kakade, A., Umare, S. S., Bhatt, D. V, & Menghani, J. (2013). Tribological behavior of nano TiO2 as an additive in base oil. Wear, 301(1), 776–785. doi:10.1016/j.wear.2013.01.037
-
Karaca, M. M., Polat, S., & Esen, İ. (2024). Reciprocating dry sliding wear behaviour of BN@MXene@AA7075 composites. Journal of Composite Materials, 58(18), 2007–2026. doi:10.1177/00219983241257665
-
Khan, M., Tahir, M. N., Adil, S. F., Khan, H. U., Siddiqui, M. R. H., Al-warthan, A. A., & Tremel, W. (2015). Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 3(37), 18753–18808. doi:10.1039/C5TA02240A
-
Kotia, A., Ghosh, G. K., Srivastava, I., Deval, P., & Ghosh, S. K. (2019). Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants. Journal of Alloys and Compounds, 782, 592–599. doi:10.1016/j.jallcom.2018.12.215
-
Krishna Sabareesh, R., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems – An experimental investigation. International Journal of Refrigeration, 35(7), 1989–1996. doi:10.1016/j.ijrefrig.2012.07.002
-
Ku, B.-C., Han, Y.-C., Lee, J.-E., Lee, J.-K., Park, S.-H., & Hwang, Y.-J. (2010). Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity. International Journal of Precision Engineering and Manufacturing, 11(4), 607–611. doi:10.1007/s12541-010-0070-8
-
Kulkarni, T., Toksha, B., & Autee, A. (2024). Optimizing nanoparticle attributes for enhanced anti-wear performance in nano-lubricants. Journal of Engineering and Applied Science, 71(1), 30. doi:10.1186/s44147-024-00374-1
-
Kulkarni, T., Toksha, B., Chatterjee, A., Naik, J., & Autee, A. (2023). Anti-wear (AW) and extreme-pressure (EP) behavior of jojoba oil dispersed with green additive CaCO3 nanoparticles. Journal of Engineering and Applied Science, 70(1), 29. doi:10.1186/s44147-023-00202-y
-
Kumar, B., Verma, D. K., Singh, A. K., Kavita, Shukla, N., & Rastogi, R. B. (2020). Nanohybrid Cu@C: synthesis, characterization and application in enhancement of lubricity. Composite Interfaces, 27(8), 777–794. doi:10.1080/09276440.2019.1697134
-
Kumar, D., Idapalapati, S., Wang, W., & Narasimalu, S. (2019). Effect of Surface Mechanical Treatments on the Microstructure-Property-Performance of Engineering Alloys. Materials, 12(16), 2503. doi:10.3390/ma12162503
-
Lefdhil, C., Polat, S., & Zengin, H. (2023). Synthesis of Zinc Oxide Nanorods from Zinc Borate Precursor and Characterization of Supercapacitor Properties. Nanomaterials, 13(17), 2423. doi:10.3390/nano13172423
-
Li, B., Li, P., Zhou, R., Feng, X.-Q., & Zhou, K. (2022). Contact mechanics in tribological and contact damage-related problems: A review. Tribology International, 171, 107534. doi:10.1016/j.triboint.2022.107534
-
Li, Y., Liu, T., Zhang, Y., Zhang, P., & Zhang, S. (2018). Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants. Industrial Lubrication and Tribology, 70(3), 519–526. doi:10.1108/ILT-05-2017-0143
-
Li, Z., Guan, Q., Liu, S., Bao, J., Ding, H., & Wang, W. (2024). Friction-reducing and anti-wear performance of SiO2-Coated TiN nanoparticles in gear oil. Wear, 538–539, 205219. doi:10.1016/j.wear.2023.205219
-
Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface. Tribology Letters, 17(4), 961–966. doi:10.1007/s11249-004-8109-6
-
Loo, D. L., Teoh, Y. H., How, H. G., Le, T. D., Nguyen, H. T., Rashid, T., … Sher, F. (2023). Effect of nanoparticles additives on tribological behaviour of advanced biofuels. Fuel, 334, 126798. doi:10.1016/j.fuel.2022.126798
-
Luo, T., Wei, X., Zhao, H., Cai, G., & Zheng, X. (2014). Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceramics International, 40(7), 10103–10109. doi:10.1016/j.ceramint.2014.03.181
-
Mashrah, M., & Polat, S. (2023). Hydrothermal synthesis and electrochemical performance of GNPs-doped MgFe2O4 electrodes for supercapacitors. Solid State Ionics, 391(December 2022), 116107. doi:10.1016/j.ssi.2022.116107
-
Mbebou, M., Polat, S., & Zengin, H. (2023). Sustainable Cauliflower-Patterned CuFe2O4 Electrode Production from Chalcopyrite for Supercapacitor Applications. Nanomaterials, 13(6), 1105. doi:10.3390/nano13061105
-
Meng, Y., Su, F., & Chen, Y. (2015). A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2 -Assisted Deposition for Reducing Friction and Wear. ACS Applied Materials & Interfaces, 7(21), 11604–11612. doi:10.1021/acsami.5b02650
-
Nagarajan, T., Khalid, M., Sridewi, N., Jagadish, P., & Walvekar, R. (2022). Microwave Synthesis of Molybdenum Disulfide Nanoparticles Using Response Surface Methodology for Tribological Application. Nanomaterials, 12(19), 3369. doi:10.3390/nano12193369
-
Nowduru, R., Bodapati, B. R., Penumakala, P. K., Malladi, S. R. K., Jain, P. K., & Srikanth, V. V. S. S. (2022). Carbon soot nanoparticles derived from wasted rubber: An additive in lubricating oil for efficient friction and wear reduction. Diamond and Related Materials, 126, 109050. doi:10.1016/j.diamond.2022.109050
-
Nozawa, R., Ferdows, M., Murakami, K., & Ota, M. (2009). Effects of Cyclodextrin Solutions on Methane Hydrate Formation (pp. 655–659). American Society of Mechanical Engineers Digital Collection. doi:10.1115/HT2007-32987
-
Opia, A. C., Kameil, A. H. M., Syahrullail, S., Johnson, C. A. N., Izmi, M. I., Mamah, S. C., … Veza, I. (2022). Tribological behavior of organic formulated anti-wear additive under high frequency reciprocating rig and unidirectional orientations: Particles transport behavior and film formation mechanism. Tribology International, 167, 107415. doi:10.1016/j.triboint.2021.107415
-
Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729–3749. doi:10.1007/s10854-020-02994-8
-
Pena-Paras, L., Maldonado-Cortes, D., Taha-Tijerina, J., Irigoyen, M., & Guerra, J. (2018). Experimental evaluation of the tribological behaviour of CeO2 nanolubricants under extreme pressures. IOP Conference Series: Materials Science and Engineering, 400, 072003. doi:10.1088/1757-899X/400/7/072003
-
Polat, S., & Faris, D. (2022). Fabrication of CuFe2O4@g-C3N4@GNPs nanocomposites as anode material for supercapacitor applications. Ceramics International, 48(17), 24609–24618. doi:10.1016/J.CERAMINT.2022.05.106
-
Polat, S., & Mashrah, M. (2022). Synthesis and electrochemical performance of MgFe2O4 with g-C3N4 on Ni-foam as composite anode material in supercapacitors. Journal of Materials Science: Materials in Electronics, 33(30), 23427–23436. doi:10.1007/s10854-022-09104-w
-
Polat, S., Mashrah, M., & Maksur, A. (2024). Evaluation of Weight, area, and Volumetric Specific Capacitance Performance of high Graphene Content ZnFe2O4 Electrode for Supercapacitors. Transactions on Electrical and Electronic Materials, 25(6), 801–810. doi:10.1007/s42341-024-00559-8
-
Polat, S., Sun, Y., & Cevik, E. (2021). Wear behavior of TiB2/GNPs and B4C/GNPs reinforced AA6061 matrix composites. Journal of Tribology, 143(11). doi:10.1115/1.4049595/1094223
-
Polat, S., Sun, Y., Çevi̇k, E., & Colijn, H. (2019). Microstructure and synergistic reinforcing activity of GNPs-B4C dual-micro and nano supplements in Al-Si matrix composites. Journal of Alloys and Compounds, 806, 1230–1241. doi:10.1016/j.jallcom.2019.06.342
-
Polat, S., Sun, Y., Çevik, E., Colijn, H., & Turan, M. E. (2019). Investigation of wear and corrosion behavior of graphene nanoplatelet-coated B4C reinforced Al–Si matrix semi-ceramic hybrid composites. Journal of Composite Materials, 53(25), 3549–3565. doi:10.1177/0021998319842297
-
Prabu, L., Saravanakumar, N., & Rajaram, G. (2018). Influence of Ag Nanoparticles for the Anti-wear and Extreme Pressure Properties of the Mineral Oil Based Nano-cutting Fluid. Tribology in Industry, 40(3), 440–447. doi:10.24874/ti.2018.40.03.10
-
Raghavulu, K. V., & Govindha Rasu, N. (2022). Taguchi optimization of process parameters used for improving tribological behaviour of graphene nanoparticle dispersed nanolubricant. Engineering Research Express, 4(1), 015024. doi:10.1088/2631-8695/ac54ec
-
Raina, A., & Anand, A. (2018). Influence of surface roughness and nanoparticles concentration on the friction and wear characteristics of PAO base oil. Materials Research Express, 5(9), 095018. doi:10.1088/2053-1591/aad764
-
Ran, X., Yu, X., & Zou, Q. (2017). Effect of Particle Concentration on Tribological Properties of ZnO Nanofluids. Tribology Transactions, 60(1), 154–158. doi:10.1080/10402004.2016.1154233
-
Ren, B., Gao, L., BotaoXie, Li, M., Zhang, S., Zu, G., & Ran, X. (2020). Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives. Tribology International, 144, 106114. doi:10.1016/j.triboint.2019.106114
-
Rundora, N. R., , Desmond E. P., K., , Safa, P., , Ntsoaki M., M., , Josias, van der M., & and Bodunrin, M. O. (2024). Dry Sliding Wear Behavior of Experimental Low-Cost Titanium Alloys. Tribology Transactions, 67(3), 560–572. doi:10.1080/10402004.2024.2357288
-
Samylingam, L., Aslfattahi, N., Kok, C. K., Kadirgama, K., Sazali, N., Liew, K. W., … Sivaraos, S. (2024). Enhancing Lubrication Efficiency and Wear Resistance in Mechanical Systems through the Application of Nanofluids: A Comprehensive Review. Journal of Advanced Research in Micro and Nano Engineering, 16(1), 1–18. doi:10.37934/armne.16.1.118
-
Saraçoğlu, T. N., Polat, S., Koç, E., Mashrah, M., Saud, A. N., & Michalska-Domańska, M. (2024). Investigating the oxidation behavior of Mg-Zn alloy: Effects of heating rates, gas flow, protective atmosphere, and alloy composition. Journal of Metals, Materials and Minerals, 34(3), 2033. doi:10.55713/jmmm.v34i3.2033
-
Shahnazar, S., Bagheri, S., Bee, S., & Hamid, A. (2016). Enhancing lubricant properties by nanoparticle additives. International Journal of Hydrogen Energy, 41, 3153–3170. doi:10.1016/j.ijhydene.2015.12.040
-
Singh, Y., Sharma, A., Singh, N., & Singla, A. (2019). Effect of alumina nanoparticles as additive on the friction and wear behavior of polanga-based lubricant. SN Applied Sciences, 1(3), 281. doi:10.1007/s42452-019-0288-8
-
Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310. doi:10.1016/j.materresbull.2012.09.013
-
Sreeram, K. J., Nidhin, M., & Nair, B. U. (2008). Microwave assisted template synthesis of silver nanoparticles. Bulletin of Materials Science, 31(7), 937–942. doi:10.1007/s12034-008-0149-3
-
Tomala, A., Ripoll, M. R., Kogovšek, J., Kalin, M., Bednarska, A., Michalczewski, R., & Szczerek, M. (2019). Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribology International, 129, 137–150. doi:10.1016/j.triboint.2018.08.005
-
Tsuzuki, T. (2021). Mechanochemical synthesis of metal oxide nanoparticles. Communications Chemistry, 4(1), 1–11. doi:10.1038/s42004-021-00582-3
-
Wang, B.-X., Wu, F., Zhang, X., Yuan, Y., Guo, S., & Barber, G. C. (2022). Orthogonal tests of the lubricating performance of SnO2 nanoparticles in poly-alfa-olefine oil. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 236(5), 908–915. doi:10.1177/13506501211037795
-
Wang, T., Li, Z., Li, J., & He, Q. (2020). Impact of Boron Nitride Nanoparticles on the Wear Property of Lithium Base Grease. Journal of Materials Engineering and Performance, 29(8), 4991–5000. doi:10.1007/s11665-020-05008-0
-
Wu, Y. Y., Tsui, W. C., & Liu, T. C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262, 819–825. doi:10.1016/j.wear.2006.08.021
-
Xie, H., Jiang, B., Dai, J., Peng, C., Li, C., Li, Q., & Pan, F. (2018). Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts. Materials, 11(2), 206. doi:10.3390/ma11020206
-
Xiong, S., Liang, D., Wu, H., & Zhang, B. (2020). Synthesis, characterisation, and tribological evaluation of Mn3B7O13Cl nanoparticle as efficient antiwear lubricant in the sliding wear between tantalum strips and steel ball. Lubrication Science, 32(3), 121–130. doi:10.1002/ls.1491
-
Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications. Advanced Science, 8(11), 2003739. doi:10.1002/advs.202003739
-
Zhang, G., Tang, J., Yang, K., Wang, R., Chen, Y., Xiong, Y., … Lin, H. (2024). Important contributions of metal interfaces on their tribological performances: From influencing factors to wear mechanisms. Composite Structures, 337, 118027. doi:10.1016/j.compstruct.2024.118027
-
Zhang, W., Zhou, M., Zhu, H., Tian, Y., Wang, K., Wei, J., … Wu, D. (2011). Tribological properties of oleic acid-modified graphene as lubricant oil additives. Journal of Physics D: Applied Physics, 44(20), 205303. doi:10.1088/0022-3727/44/20/205303
-
Zhang, X., Ren, T., & Li, Z. (2023). Recent advances of two-dimensional lubricating materials: from tunable tribological properties to applications. Journal of Materials Chemistry A, 11(17), 9239–9269. doi:10.1039/D2TA08489A
-
Zheng, B., Zhou, J., Jia, X., & He, Q. (2020). Friction and wear property of lithium grease contained with copper oxide nanoparticles. Applied Nanoscience, 10(4), 1355–1367. doi:10.1007/s13204-019-01219-7
-
Zhou, G., Zhu, Y., Wang, X., Xia, M., Zhang, Y., & Ding, H. (2013). Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil. Wear, 301(1–2), 753–757. doi:10.1016/j.wear.2013.01.027
Nanoparçacık Katkılı Yağlayıcılar ile Sürtünme ve Aşınma Performansının İyileştirilmesi: Eleştirel Bir İnceleme
Yıl 2025,
Cilt: 6 Sayı: 1, 13 - 21, 30.06.2025
M. Salih Gül
,
Safa Polat
Öz
Nanopartiküller, zorlu koşullar altında çalışan mekanik sistemlerde sürtünmeyi ve aşınmayı azaltmak için potansiyel çözümler sunan, yağlama yağlarında umut verici katkı maddeleri olarak ortaya çıkmıştır. Son çalışmalar, nano ölçekli malzemelerin yağlayıcılara dahil edilmesinin, yüzey filmi oluşumu ve mikro yapısal düzeyde etkileşim gibi mekanizmalar aracılığıyla tribolojik performansı önemli ölçüde iyileştirebileceğini göstermiştir. Grafen gibi iki boyutlu malzemelerin sürtünme katsayısını ve aşınma
izi çapını sırasıyla yaklaşık %40 %30 oranında azalttığı bildirilirken, Al₂O₃ gibi üç boyutlu nanopartiküller sürtünme katsayısı değerini yaklaşık %15 oranında azaltmaktadır. Ancak, bu alandaki artan araştırmalara rağmen, birçok çalışma sınırlı nanopartikül tiplerine odaklanmaktadır veya sentez yöntemlerinin ve dispersiyon davranışının genel performans üzerindeki etkisini sistematik olarak incelememektedir. Özellikle, partikül tipleri, işleme yolları ve çalışma koşulları arasında kapsamlı karşılaştırmaların
olmaması, endüstriyel uygulamalar için optimize edilmiş formülasyonların geliştirilmesini engellemektedir. Bu inceleme, sentez tekniği, tribolojik mekanizma ve performans sonucu arasındaki ilişkilere odaklanarak nanopartikül destekli yağlayıcılardaki son gelişmeleri analiz ederek bu boşlukları ele almaktadır. Literatürden elde edilen bulgular, nanopartiküllerin doğrudan teması en aza indirerek ve yüzey etkileşimlerini değiştirerek aşınmayı etkili bir şekilde azaltabileceğini ve bileşen ömrünü uzatabileceğini
doğrulamaktadır. Bu faydalar ışığında, nanopartikül tiplerinin çeşitlendirilmesi, yeni hibrit yapıların araştırılması ve daha geniş ve daha verimli uygulamalar için yağlama sistemlerine işlevsel entegrasyonlarının hassas bir şekilde ayarlanması için daha fazla araştırma yapılması teşvik edilmektedir.
Kaynakça
-
Boruah, U., Mohan, B., Choudhury, N. D., & Chowdhury, D. (2025). Surface-Modified Graphitic Carbon Nitride as a Lubricant Additive in Bio-Based Oil. ACS Applied Nano Materials, 8(11), 5430–5443. doi:10.1021/acsanm.4c07072
-
Cetin, M. H., & Kabave Kilincarslan, S. (2020). Effects of cutting fluids with nano-silver and borax additives on milling performance of aluminium alloys. Journal of Manufacturing Processes, 50, 170–182. doi:10.1016/j.jmapro.2019.12.042
-
Cetin, M. H., Kesen, A., Korkmaz, S., & Kabave Kilincarslan, S. (2020). Performance evaluation of the nano-silver added vegetable-oil-based cutting fluid in drilling process. Surface Topography: Metrology and Properties, 8(2), 025029. doi:10.1088/2051-672X/ab96dc
-
Chen, S., Liu, W., & Yu, L. (1998). Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear, 218(2), 153–158. doi:10.1016/S0043-1648(98)00220-8
-
Eswaraiah, V., Sankaranarayanan, V., & Ramaprabhu, S. (2011). Graphene-Based Engine Oil Nanofluids for Tribological Applications. ACS Applied Materials \& Interfaces, 3(11), 4221–4227. doi:10.1021/am200851z
-
Findik, F. (2014). Latest progress on tribological properties of industrial materials. Materials \& Design, 57, 218–244. doi:10.1016/j.matdes.2013.12.028
-
Gul, M. S., Demirsöz, R., Kabave Kilincarslan, S., Polat, R., & Cetin, M. H. (2024). Effect of Impact Angle and Speed, and Weight Abrasive Concentration on AISI 1015 and 304 Steel Exposed to Erosive Wear. Journal of Materials Engineering and Performance, 1–19. doi:10.1007/S11665-023-09117-4/FIGURES/11
-
Gul, M. S., Gokkaya, H., Kondul, B., & Cetin, M. H. (2022). Makine Konstrüksiyonunda Kullanılabilirlik için Hastelloy C-22 Süper Alaşımının Aşınma Direncinin Kriyojenik İşlem ile Etkileşiminin İncelenmesi. Konya Journal of Engineering Sciences, 10(1), 175–188. doi:10.36306/konjes.1024523
-
Gul, M. S., Polat, S., Cetin, M. H., Kabave Kilincarslan, S., & Polat, R. (2025). The Influence of 2D g-C3N4, MXene, and Fe2O3 Additives on Tribofilm Formation in Mechanical Interfaces. Journal of Tribology, 1–36. doi:10.1115/1.4068562
-
Guzman Borda, F. L., Ribeiro de Oliveira, S. J., Seabra Monteiro Lazaro, L. M., & Kalab Leiróz, A. J. (2018). Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribology International, 117, 52–58. doi:10.1016/j.triboint.2017.08.012
-
Hernandez Battez, A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3–4), 256–263. doi:10.1016/J.WEAR.2005.10.001
-
Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., … Kim, S. H. (2011). Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. Journal of Mechanical Science and Technology, 25(11), 2853–2857. doi:10.1007/s12206-011-0724-1
-
Ingole, S., Charanpahari, A., Kakade, A., Umare, S. S., Bhatt, D. V, & Menghani, J. (2013). Tribological behavior of nano TiO2 as an additive in base oil. Wear, 301(1), 776–785. doi:10.1016/j.wear.2013.01.037
-
Karaca, M. M., Polat, S., & Esen, İ. (2024). Reciprocating dry sliding wear behaviour of BN@MXene@AA7075 composites. Journal of Composite Materials, 58(18), 2007–2026. doi:10.1177/00219983241257665
-
Khan, M., Tahir, M. N., Adil, S. F., Khan, H. U., Siddiqui, M. R. H., Al-warthan, A. A., & Tremel, W. (2015). Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 3(37), 18753–18808. doi:10.1039/C5TA02240A
-
Kotia, A., Ghosh, G. K., Srivastava, I., Deval, P., & Ghosh, S. K. (2019). Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants. Journal of Alloys and Compounds, 782, 592–599. doi:10.1016/j.jallcom.2018.12.215
-
Krishna Sabareesh, R., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems – An experimental investigation. International Journal of Refrigeration, 35(7), 1989–1996. doi:10.1016/j.ijrefrig.2012.07.002
-
Ku, B.-C., Han, Y.-C., Lee, J.-E., Lee, J.-K., Park, S.-H., & Hwang, Y.-J. (2010). Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity. International Journal of Precision Engineering and Manufacturing, 11(4), 607–611. doi:10.1007/s12541-010-0070-8
-
Kulkarni, T., Toksha, B., & Autee, A. (2024). Optimizing nanoparticle attributes for enhanced anti-wear performance in nano-lubricants. Journal of Engineering and Applied Science, 71(1), 30. doi:10.1186/s44147-024-00374-1
-
Kulkarni, T., Toksha, B., Chatterjee, A., Naik, J., & Autee, A. (2023). Anti-wear (AW) and extreme-pressure (EP) behavior of jojoba oil dispersed with green additive CaCO3 nanoparticles. Journal of Engineering and Applied Science, 70(1), 29. doi:10.1186/s44147-023-00202-y
-
Kumar, B., Verma, D. K., Singh, A. K., Kavita, Shukla, N., & Rastogi, R. B. (2020). Nanohybrid Cu@C: synthesis, characterization and application in enhancement of lubricity. Composite Interfaces, 27(8), 777–794. doi:10.1080/09276440.2019.1697134
-
Kumar, D., Idapalapati, S., Wang, W., & Narasimalu, S. (2019). Effect of Surface Mechanical Treatments on the Microstructure-Property-Performance of Engineering Alloys. Materials, 12(16), 2503. doi:10.3390/ma12162503
-
Lefdhil, C., Polat, S., & Zengin, H. (2023). Synthesis of Zinc Oxide Nanorods from Zinc Borate Precursor and Characterization of Supercapacitor Properties. Nanomaterials, 13(17), 2423. doi:10.3390/nano13172423
-
Li, B., Li, P., Zhou, R., Feng, X.-Q., & Zhou, K. (2022). Contact mechanics in tribological and contact damage-related problems: A review. Tribology International, 171, 107534. doi:10.1016/j.triboint.2022.107534
-
Li, Y., Liu, T., Zhang, Y., Zhang, P., & Zhang, S. (2018). Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants. Industrial Lubrication and Tribology, 70(3), 519–526. doi:10.1108/ILT-05-2017-0143
-
Li, Z., Guan, Q., Liu, S., Bao, J., Ding, H., & Wang, W. (2024). Friction-reducing and anti-wear performance of SiO2-Coated TiN nanoparticles in gear oil. Wear, 538–539, 205219. doi:10.1016/j.wear.2023.205219
-
Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface. Tribology Letters, 17(4), 961–966. doi:10.1007/s11249-004-8109-6
-
Loo, D. L., Teoh, Y. H., How, H. G., Le, T. D., Nguyen, H. T., Rashid, T., … Sher, F. (2023). Effect of nanoparticles additives on tribological behaviour of advanced biofuels. Fuel, 334, 126798. doi:10.1016/j.fuel.2022.126798
-
Luo, T., Wei, X., Zhao, H., Cai, G., & Zheng, X. (2014). Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceramics International, 40(7), 10103–10109. doi:10.1016/j.ceramint.2014.03.181
-
Mashrah, M., & Polat, S. (2023). Hydrothermal synthesis and electrochemical performance of GNPs-doped MgFe2O4 electrodes for supercapacitors. Solid State Ionics, 391(December 2022), 116107. doi:10.1016/j.ssi.2022.116107
-
Mbebou, M., Polat, S., & Zengin, H. (2023). Sustainable Cauliflower-Patterned CuFe2O4 Electrode Production from Chalcopyrite for Supercapacitor Applications. Nanomaterials, 13(6), 1105. doi:10.3390/nano13061105
-
Meng, Y., Su, F., & Chen, Y. (2015). A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2 -Assisted Deposition for Reducing Friction and Wear. ACS Applied Materials & Interfaces, 7(21), 11604–11612. doi:10.1021/acsami.5b02650
-
Nagarajan, T., Khalid, M., Sridewi, N., Jagadish, P., & Walvekar, R. (2022). Microwave Synthesis of Molybdenum Disulfide Nanoparticles Using Response Surface Methodology for Tribological Application. Nanomaterials, 12(19), 3369. doi:10.3390/nano12193369
-
Nowduru, R., Bodapati, B. R., Penumakala, P. K., Malladi, S. R. K., Jain, P. K., & Srikanth, V. V. S. S. (2022). Carbon soot nanoparticles derived from wasted rubber: An additive in lubricating oil for efficient friction and wear reduction. Diamond and Related Materials, 126, 109050. doi:10.1016/j.diamond.2022.109050
-
Nozawa, R., Ferdows, M., Murakami, K., & Ota, M. (2009). Effects of Cyclodextrin Solutions on Methane Hydrate Formation (pp. 655–659). American Society of Mechanical Engineers Digital Collection. doi:10.1115/HT2007-32987
-
Opia, A. C., Kameil, A. H. M., Syahrullail, S., Johnson, C. A. N., Izmi, M. I., Mamah, S. C., … Veza, I. (2022). Tribological behavior of organic formulated anti-wear additive under high frequency reciprocating rig and unidirectional orientations: Particles transport behavior and film formation mechanism. Tribology International, 167, 107415. doi:10.1016/j.triboint.2021.107415
-
Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729–3749. doi:10.1007/s10854-020-02994-8
-
Pena-Paras, L., Maldonado-Cortes, D., Taha-Tijerina, J., Irigoyen, M., & Guerra, J. (2018). Experimental evaluation of the tribological behaviour of CeO2 nanolubricants under extreme pressures. IOP Conference Series: Materials Science and Engineering, 400, 072003. doi:10.1088/1757-899X/400/7/072003
-
Polat, S., & Faris, D. (2022). Fabrication of CuFe2O4@g-C3N4@GNPs nanocomposites as anode material for supercapacitor applications. Ceramics International, 48(17), 24609–24618. doi:10.1016/J.CERAMINT.2022.05.106
-
Polat, S., & Mashrah, M. (2022). Synthesis and electrochemical performance of MgFe2O4 with g-C3N4 on Ni-foam as composite anode material in supercapacitors. Journal of Materials Science: Materials in Electronics, 33(30), 23427–23436. doi:10.1007/s10854-022-09104-w
-
Polat, S., Mashrah, M., & Maksur, A. (2024). Evaluation of Weight, area, and Volumetric Specific Capacitance Performance of high Graphene Content ZnFe2O4 Electrode for Supercapacitors. Transactions on Electrical and Electronic Materials, 25(6), 801–810. doi:10.1007/s42341-024-00559-8
-
Polat, S., Sun, Y., & Cevik, E. (2021). Wear behavior of TiB2/GNPs and B4C/GNPs reinforced AA6061 matrix composites. Journal of Tribology, 143(11). doi:10.1115/1.4049595/1094223
-
Polat, S., Sun, Y., Çevi̇k, E., & Colijn, H. (2019). Microstructure and synergistic reinforcing activity of GNPs-B4C dual-micro and nano supplements in Al-Si matrix composites. Journal of Alloys and Compounds, 806, 1230–1241. doi:10.1016/j.jallcom.2019.06.342
-
Polat, S., Sun, Y., Çevik, E., Colijn, H., & Turan, M. E. (2019). Investigation of wear and corrosion behavior of graphene nanoplatelet-coated B4C reinforced Al–Si matrix semi-ceramic hybrid composites. Journal of Composite Materials, 53(25), 3549–3565. doi:10.1177/0021998319842297
-
Prabu, L., Saravanakumar, N., & Rajaram, G. (2018). Influence of Ag Nanoparticles for the Anti-wear and Extreme Pressure Properties of the Mineral Oil Based Nano-cutting Fluid. Tribology in Industry, 40(3), 440–447. doi:10.24874/ti.2018.40.03.10
-
Raghavulu, K. V., & Govindha Rasu, N. (2022). Taguchi optimization of process parameters used for improving tribological behaviour of graphene nanoparticle dispersed nanolubricant. Engineering Research Express, 4(1), 015024. doi:10.1088/2631-8695/ac54ec
-
Raina, A., & Anand, A. (2018). Influence of surface roughness and nanoparticles concentration on the friction and wear characteristics of PAO base oil. Materials Research Express, 5(9), 095018. doi:10.1088/2053-1591/aad764
-
Ran, X., Yu, X., & Zou, Q. (2017). Effect of Particle Concentration on Tribological Properties of ZnO Nanofluids. Tribology Transactions, 60(1), 154–158. doi:10.1080/10402004.2016.1154233
-
Ren, B., Gao, L., BotaoXie, Li, M., Zhang, S., Zu, G., & Ran, X. (2020). Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives. Tribology International, 144, 106114. doi:10.1016/j.triboint.2019.106114
-
Rundora, N. R., , Desmond E. P., K., , Safa, P., , Ntsoaki M., M., , Josias, van der M., & and Bodunrin, M. O. (2024). Dry Sliding Wear Behavior of Experimental Low-Cost Titanium Alloys. Tribology Transactions, 67(3), 560–572. doi:10.1080/10402004.2024.2357288
-
Samylingam, L., Aslfattahi, N., Kok, C. K., Kadirgama, K., Sazali, N., Liew, K. W., … Sivaraos, S. (2024). Enhancing Lubrication Efficiency and Wear Resistance in Mechanical Systems through the Application of Nanofluids: A Comprehensive Review. Journal of Advanced Research in Micro and Nano Engineering, 16(1), 1–18. doi:10.37934/armne.16.1.118
-
Saraçoğlu, T. N., Polat, S., Koç, E., Mashrah, M., Saud, A. N., & Michalska-Domańska, M. (2024). Investigating the oxidation behavior of Mg-Zn alloy: Effects of heating rates, gas flow, protective atmosphere, and alloy composition. Journal of Metals, Materials and Minerals, 34(3), 2033. doi:10.55713/jmmm.v34i3.2033
-
Shahnazar, S., Bagheri, S., Bee, S., & Hamid, A. (2016). Enhancing lubricant properties by nanoparticle additives. International Journal of Hydrogen Energy, 41, 3153–3170. doi:10.1016/j.ijhydene.2015.12.040
-
Singh, Y., Sharma, A., Singh, N., & Singla, A. (2019). Effect of alumina nanoparticles as additive on the friction and wear behavior of polanga-based lubricant. SN Applied Sciences, 1(3), 281. doi:10.1007/s42452-019-0288-8
-
Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310. doi:10.1016/j.materresbull.2012.09.013
-
Sreeram, K. J., Nidhin, M., & Nair, B. U. (2008). Microwave assisted template synthesis of silver nanoparticles. Bulletin of Materials Science, 31(7), 937–942. doi:10.1007/s12034-008-0149-3
-
Tomala, A., Ripoll, M. R., Kogovšek, J., Kalin, M., Bednarska, A., Michalczewski, R., & Szczerek, M. (2019). Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribology International, 129, 137–150. doi:10.1016/j.triboint.2018.08.005
-
Tsuzuki, T. (2021). Mechanochemical synthesis of metal oxide nanoparticles. Communications Chemistry, 4(1), 1–11. doi:10.1038/s42004-021-00582-3
-
Wang, B.-X., Wu, F., Zhang, X., Yuan, Y., Guo, S., & Barber, G. C. (2022). Orthogonal tests of the lubricating performance of SnO2 nanoparticles in poly-alfa-olefine oil. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 236(5), 908–915. doi:10.1177/13506501211037795
-
Wang, T., Li, Z., Li, J., & He, Q. (2020). Impact of Boron Nitride Nanoparticles on the Wear Property of Lithium Base Grease. Journal of Materials Engineering and Performance, 29(8), 4991–5000. doi:10.1007/s11665-020-05008-0
-
Wu, Y. Y., Tsui, W. C., & Liu, T. C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262, 819–825. doi:10.1016/j.wear.2006.08.021
-
Xie, H., Jiang, B., Dai, J., Peng, C., Li, C., Li, Q., & Pan, F. (2018). Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts. Materials, 11(2), 206. doi:10.3390/ma11020206
-
Xiong, S., Liang, D., Wu, H., & Zhang, B. (2020). Synthesis, characterisation, and tribological evaluation of Mn3B7O13Cl nanoparticle as efficient antiwear lubricant in the sliding wear between tantalum strips and steel ball. Lubrication Science, 32(3), 121–130. doi:10.1002/ls.1491
-
Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications. Advanced Science, 8(11), 2003739. doi:10.1002/advs.202003739
-
Zhang, G., Tang, J., Yang, K., Wang, R., Chen, Y., Xiong, Y., … Lin, H. (2024). Important contributions of metal interfaces on their tribological performances: From influencing factors to wear mechanisms. Composite Structures, 337, 118027. doi:10.1016/j.compstruct.2024.118027
-
Zhang, W., Zhou, M., Zhu, H., Tian, Y., Wang, K., Wei, J., … Wu, D. (2011). Tribological properties of oleic acid-modified graphene as lubricant oil additives. Journal of Physics D: Applied Physics, 44(20), 205303. doi:10.1088/0022-3727/44/20/205303
-
Zhang, X., Ren, T., & Li, Z. (2023). Recent advances of two-dimensional lubricating materials: from tunable tribological properties to applications. Journal of Materials Chemistry A, 11(17), 9239–9269. doi:10.1039/D2TA08489A
-
Zheng, B., Zhou, J., Jia, X., & He, Q. (2020). Friction and wear property of lithium grease contained with copper oxide nanoparticles. Applied Nanoscience, 10(4), 1355–1367. doi:10.1007/s13204-019-01219-7
-
Zhou, G., Zhu, Y., Wang, X., Xia, M., Zhang, Y., & Ding, H. (2013). Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil. Wear, 301(1–2), 753–757. doi:10.1016/j.wear.2013.01.027