Research Article
BibTex RIS Cite

On some integral inequalities for (k,h)−Riemann-Liouville fractional integral

Year 2016, Volume: 4 Issue: 2, 138 - 146, 01.03.2016
https://izlik.org/JA43MP64JN

Abstract

In this study, giving the definition of fractional integral, which are with the help of synchronous and monotonic function,  some fractional integral inequalities have established.


References

  • Anastassiou GA, Hooshmandasl MR, Ghasemi A, Moftakharzadeh F. Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10(4)(2009), 1-6.
  • Anastassiou GA. Fractional Differentiation Inequalities, Springer Science, LLC, 2009.
  • Belarbi S, Dahmani Z. On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10(3)(2009), 1-12.
  • Dahmani Z. New inequalities in fractional integrals, International Journal of Nonlinear Sciences, 9(4)(2010), 493-497.
  • Dahmani Z. On Minkowski and Hermite-Hadamad integral inequalities via fractional integration, Ann. Funct. Anal., 1(1)(2010, 51-58.
  • Dragomir SS. A generalization of Gruss’s inequality in inner product spaces and applications, J.Math. Annal. Appl., 237(1)(1999), 74-82.
  • Mitrinovic DS, Pecaric JE, Fink AM. Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
  • Pachpatte BG. On multidimensional Gruss type integral inequalities, J. Inequal. Pure Appl. Math., 32 (2002), 1-15. Qi F, Li AJ, Zhao WZ, Niu DW, Cao J. Extensions of several integral inequalities, J. Inequal. Pure Appl. Math., 7(3)(2006), 1-6.
  • Qi F. Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2)(2000), 1-9.
  • Sarikaya MZ, Aktan N, Yildirim H. On weighted Chebyshev-Gruss like inequalities on time scales, J. Math. Inequal., 2(2)(2008), 185-195.
  • Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives - Theory and Applications, Gordon and Breach, Linghorne, 1993.
  • Akkurt A, Kac¸ar Z, Yildirim H. Generalized Fractional Integrals Inequalities for Continuous Random Variables, Journal of Probability Statistics, Volume 2015, http://dx.doi.org/10.1155/2015/958980, (2015).
  • Diaz, R. and Pariguan, E., On hypergeometric functions and Pochhammer k−symbol, Divulg.Math, 15.(2007),179-192.
  • P. L. Butzer, A. A. Kilbas and J.J. Trujillo, Fractional calculus in theMellin setting and Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, 269, (2002), 1-27.
  • U.N. Katugampola, New Approach to a Generalized Fractional Fntegral, Appl. Math. Comput. 218(3), (2011), 860-865.
  • A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • Akkurt, A., & Yıldırım, H. (2014). Genellestirilmis¸ Fractional Integraller Icin Feng Qi Tipli Integral Esitsizlikleri Uzerine. Fen Bilimleri Dergisi, 1(2).
  • Mubeen, S. and Habibullah, G.M., k−fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2), 2012, 89-94.
  • M.Z. Sarikaya, Z. Dahmani, M.E. Kiris and F. Ahmad, (ks)−Riemann-Liouville fractional integral and applications, Hacettepe Journal of Mathematics and Statistics, Accepted.

Year 2016, Volume: 4 Issue: 2, 138 - 146, 01.03.2016
https://izlik.org/JA43MP64JN

Abstract

References

  • Anastassiou GA, Hooshmandasl MR, Ghasemi A, Moftakharzadeh F. Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10(4)(2009), 1-6.
  • Anastassiou GA. Fractional Differentiation Inequalities, Springer Science, LLC, 2009.
  • Belarbi S, Dahmani Z. On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10(3)(2009), 1-12.
  • Dahmani Z. New inequalities in fractional integrals, International Journal of Nonlinear Sciences, 9(4)(2010), 493-497.
  • Dahmani Z. On Minkowski and Hermite-Hadamad integral inequalities via fractional integration, Ann. Funct. Anal., 1(1)(2010, 51-58.
  • Dragomir SS. A generalization of Gruss’s inequality in inner product spaces and applications, J.Math. Annal. Appl., 237(1)(1999), 74-82.
  • Mitrinovic DS, Pecaric JE, Fink AM. Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
  • Pachpatte BG. On multidimensional Gruss type integral inequalities, J. Inequal. Pure Appl. Math., 32 (2002), 1-15. Qi F, Li AJ, Zhao WZ, Niu DW, Cao J. Extensions of several integral inequalities, J. Inequal. Pure Appl. Math., 7(3)(2006), 1-6.
  • Qi F. Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2)(2000), 1-9.
  • Sarikaya MZ, Aktan N, Yildirim H. On weighted Chebyshev-Gruss like inequalities on time scales, J. Math. Inequal., 2(2)(2008), 185-195.
  • Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives - Theory and Applications, Gordon and Breach, Linghorne, 1993.
  • Akkurt A, Kac¸ar Z, Yildirim H. Generalized Fractional Integrals Inequalities for Continuous Random Variables, Journal of Probability Statistics, Volume 2015, http://dx.doi.org/10.1155/2015/958980, (2015).
  • Diaz, R. and Pariguan, E., On hypergeometric functions and Pochhammer k−symbol, Divulg.Math, 15.(2007),179-192.
  • P. L. Butzer, A. A. Kilbas and J.J. Trujillo, Fractional calculus in theMellin setting and Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, 269, (2002), 1-27.
  • U.N. Katugampola, New Approach to a Generalized Fractional Fntegral, Appl. Math. Comput. 218(3), (2011), 860-865.
  • A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • Akkurt, A., & Yıldırım, H. (2014). Genellestirilmis¸ Fractional Integraller Icin Feng Qi Tipli Integral Esitsizlikleri Uzerine. Fen Bilimleri Dergisi, 1(2).
  • Mubeen, S. and Habibullah, G.M., k−fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2), 2012, 89-94.
  • M.Z. Sarikaya, Z. Dahmani, M.E. Kiris and F. Ahmad, (ks)−Riemann-Liouville fractional integral and applications, Hacettepe Journal of Mathematics and Statistics, Accepted.
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Abdullah Akkurt

M. Esra Yildirim This is me

Huseyin Yildirim Yildirim This is me

Publication Date March 1, 2016
IZ https://izlik.org/JA43MP64JN
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Akkurt, A., Yildirim, M. E., & Yildirim, H. Y. (2016). On some integral inequalities for (k,h)−Riemann-Liouville fractional integral. New Trends in Mathematical Sciences, 4(2), 138-146. https://izlik.org/JA43MP64JN
AMA 1.Akkurt A, Yildirim ME, Yildirim HY. On some integral inequalities for (k,h)−Riemann-Liouville fractional integral. New Trends in Mathematical Sciences. 2016;4(2):138-146. https://izlik.org/JA43MP64JN
Chicago Akkurt, Abdullah, M. Esra Yildirim, and Huseyin Yildirim Yildirim. 2016. “On Some Integral Inequalities for (k,h)−Riemann-Liouville Fractional Integral”. New Trends in Mathematical Sciences 4 (2): 138-46. https://izlik.org/JA43MP64JN.
EndNote Akkurt A, Yildirim ME, Yildirim HY (March 1, 2016) On some integral inequalities for (k,h)−Riemann-Liouville fractional integral. New Trends in Mathematical Sciences 4 2 138–146.
IEEE [1]A. Akkurt, M. E. Yildirim, and H. Y. Yildirim, “On some integral inequalities for (k,h)−Riemann-Liouville fractional integral”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 138–146, Mar. 2016, [Online]. Available: https://izlik.org/JA43MP64JN
ISNAD Akkurt, Abdullah - Yildirim, M. Esra - Yildirim, Huseyin Yildirim. “On Some Integral Inequalities for (k,h)−Riemann-Liouville Fractional Integral”. New Trends in Mathematical Sciences 4/2 (March 1, 2016): 138-146. https://izlik.org/JA43MP64JN.
JAMA 1.Akkurt A, Yildirim ME, Yildirim HY. On some integral inequalities for (k,h)−Riemann-Liouville fractional integral. New Trends in Mathematical Sciences. 2016;4:138–146.
MLA Akkurt, Abdullah, et al. “On Some Integral Inequalities for (k,h)−Riemann-Liouville Fractional Integral”. New Trends in Mathematical Sciences, vol. 4, no. 2, Mar. 2016, pp. 138-46, https://izlik.org/JA43MP64JN.
Vancouver 1.Akkurt A, Yildirim ME, Yildirim HY. On some integral inequalities for (k,h)−Riemann-Liouville fractional integral. New Trends in Mathematical Sciences [Internet]. 2016 Mar. 1;4(2):138-46. Available from: https://izlik.org/JA43MP64JN