Research Article
BibTex RIS Cite

Year 2016, Volume: 4 Issue: 3, 223 - 230, 30.09.2016

Abstract

References

  • Kandasamy, W.B.V., and Smarandache, F., Dual Numbers, Zip Publishing, Ohio, 2012.
  • Study, E., Die Geometrie der Dynamen, Leibzig, 1903.
  • Kazaz, M., Ozdemir, A., Ugurlu H.H., Eliptic Motion on Dual Hyperbolic Unit Sphere H ̃_0^2, Mechanism Machine Theory, 1450-1459, 2009.
  • Veldkamp, G. R., On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanisms and Machine Theory, vol. 11 pp. 141-156, 1976.
  • Taleshian, A., Application of Covariant Derivative in the Dual Space, Int. J. Contemp. Math. Sciences, Vol. 4, no. 17, 821-826, 2009.
  • Ball, R.S., Theory of Screws, Cambridge University Press, Cambridge, 1900.
  • O’Neill, B., Elementary Geometry Differential, New York and London, 1966.
  • Do Carmo, M.P., Differential Geometry Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.

Some characterizations of dual vector fields

Year 2016, Volume: 4 Issue: 3, 223 - 230, 30.09.2016

Abstract



The set of the dual vectors which are introduced by ,  called as dual vector field. In our
paper, we introduce the directional derivative of the dual vector fields and
investigate some properties of them. Then we give a numeric example of the dual
vector field aided by E. Study theorem.




References

  • Kandasamy, W.B.V., and Smarandache, F., Dual Numbers, Zip Publishing, Ohio, 2012.
  • Study, E., Die Geometrie der Dynamen, Leibzig, 1903.
  • Kazaz, M., Ozdemir, A., Ugurlu H.H., Eliptic Motion on Dual Hyperbolic Unit Sphere H ̃_0^2, Mechanism Machine Theory, 1450-1459, 2009.
  • Veldkamp, G. R., On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanisms and Machine Theory, vol. 11 pp. 141-156, 1976.
  • Taleshian, A., Application of Covariant Derivative in the Dual Space, Int. J. Contemp. Math. Sciences, Vol. 4, no. 17, 821-826, 2009.
  • Ball, R.S., Theory of Screws, Cambridge University Press, Cambridge, 1900.
  • O’Neill, B., Elementary Geometry Differential, New York and London, 1966.
  • Do Carmo, M.P., Differential Geometry Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Hatice Kusak Samanci

Serkan Celik This is me

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 3

Cite

APA Kusak Samanci, H., & Celik, S. (2016). Some characterizations of dual vector fields. New Trends in Mathematical Sciences, 4(3), 223-230.
AMA Kusak Samanci H, Celik S. Some characterizations of dual vector fields. New Trends in Mathematical Sciences. September 2016;4(3):223-230.
Chicago Kusak Samanci, Hatice, and Serkan Celik. “Some Characterizations of Dual Vector Fields”. New Trends in Mathematical Sciences 4, no. 3 (September 2016): 223-30.
EndNote Kusak Samanci H, Celik S (September 1, 2016) Some characterizations of dual vector fields. New Trends in Mathematical Sciences 4 3 223–230.
IEEE H. Kusak Samanci and S. Celik, “Some characterizations of dual vector fields”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 223–230, 2016.
ISNAD Kusak Samanci, Hatice - Celik, Serkan. “Some Characterizations of Dual Vector Fields”. New Trends in Mathematical Sciences 4/3 (September2016), 223-230.
JAMA Kusak Samanci H, Celik S. Some characterizations of dual vector fields. New Trends in Mathematical Sciences. 2016;4:223–230.
MLA Kusak Samanci, Hatice and Serkan Celik. “Some Characterizations of Dual Vector Fields”. New Trends in Mathematical Sciences, vol. 4, no. 3, 2016, pp. 223-30.
Vancouver Kusak Samanci H, Celik S. Some characterizations of dual vector fields. New Trends in Mathematical Sciences. 2016;4(3):223-30.