| APA |
Iscan, İ., Kunt, M., & Yazici, N. (2016). Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences, 4(3), 239-253. https://izlik.org/JA29JL94AL
|
|
| AMA |
1.Iscan İ, Kunt M, Yazici N. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences. 2016;4(3):239-253. https://izlik.org/JA29JL94AL
|
|
| Chicago |
Iscan, İmdat, Mehmet Kunt, and Nazli Yazici. 2016. “Hermite-Hadamard-Fejér Type Inequalities for Harmonically Convex Functions via Fractional Integrals”. New Trends in Mathematical Sciences 4 (3): 239-53. https://izlik.org/JA29JL94AL.
|
|
| EndNote |
Iscan İ, Kunt M, Yazici N (September 1, 2016) Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences 4 3 239–253.
|
|
| IEEE |
[1]İ. Iscan, M. Kunt, and N. Yazici, “Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 239–253, Sept. 2016, [Online]. Available: https://izlik.org/JA29JL94AL
|
|
| ISNAD |
Iscan, İmdat - Kunt, Mehmet - Yazici, Nazli. “Hermite-Hadamard-Fejér Type Inequalities for Harmonically Convex Functions via Fractional Integrals”. New Trends in Mathematical Sciences 4/3 (September 1, 2016): 239-253. https://izlik.org/JA29JL94AL.
|
|
| JAMA |
1.Iscan İ, Kunt M, Yazici N. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences. 2016;4:239–253.
|
|
| MLA |
Iscan, İmdat, et al. “Hermite-Hadamard-Fejér Type Inequalities for Harmonically Convex Functions via Fractional Integrals”. New Trends in Mathematical Sciences, vol. 4, no. 3, Sept. 2016, pp. 239-53, https://izlik.org/JA29JL94AL.
|
|
| Vancouver |
1.Iscan İ, Kunt M, Yazici N. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences [Internet]. 2016 Sept. 1;4(3):239-53. Available from: https://izlik.org/JA29JL94AL
|
|