BibTex RIS Cite

A Numerical Approach Based on Exponential Polynomials for solving of Fredholm Integro-Differential-Difference Equations

Year 2015, Volume: 3 Issue: 2, 44 - 54, 19.01.2015

Abstract

In this study, a matrix method based on exponential polynomials by means of collocation points is proposed to solvethe higher-order linear Fredholm integro-differential-difference equations under the initial-boundary conditions. In addition, an erroranalysis technique based on residual function is developed for our method. Illustrative examples are included to demostrate the validityand applicability of the presented technique

References

  • S.Yalc¸ınbas¸, M.Sezer, The approximate solution of high-order linear Voltera-fredholm Integro-Differential equations in term of Taylor Polynomials, Apply. Math. Comput., 112, 291-308, 2000.
  • W.Wang, An Algorithm for solving the high-order nonlinear Voltera-fredholm Integro-Differential equations with mechanization, Apply. Math. Comput., 172, 1-23, 2006.
  • Y.Ben, B. Zhang, H. Qiao, A simple Taylor series expansion method for a class of second kind integral equations, J. Comp Appl. Math., 110, 15-24, 1999.
  • K. Maleknejad, Y. Mahmoud, Numerical solution of linear Fredholm Integral Equations by using hybrid Taylor and block-pulse functions, Apply. Math. Comput., 149, 799-806, 2004.
  • M.T. Rashed, Numerical solution of functional differential, integral and integro-differential equations, Appl. Numer. Math., 156, 485-492, 2004.
  • W.Wang, C. Lin, A new algorithm for integral of trigonometric functions with mechanization, Apply. Math. Comput., 164(1), 71-82, 2005.
  • M.Sezer, M.G¨ulsu, A new polynomial approach for solving difference and Fredholm integro-differential equations with mixed argument, Apply. Math. Comput., 171, 332-344, 2005.
  • S.Yalc¸ınbas¸, M.Sezer, H.H. Sorkun, Legendre polynomial solutions of high-order linear Fredholm integro-differential equations, Apply. Math. Comput., 210, 334-349, 2009.
  • M.G¨ulsu, M.Sezer, A Taylor polynomial approach for solving differential-difference equations, J. Comp Appl. Math., 186, 349- 364, 2006.
  • L.M. Delves, J.L. Mohamed, Computational Methods for integral equations, Cambridge University Press, Cambridge, 1985.
  • M. Razzagi, S. Yousefi, Legendre wavelets method for the nonlinear Voltera-Fredholm integral equations, Math. Comput. Simul., 70, 1-8, 2005.
  • S.Shahmorad, Numerical solution of general form linear Fredholm-Voltera integro-differential equations by the Tau Method with an error estimation, Appl. Math. Comput., 167, 1418-1424, 2005.
  • S.M. Hosseini, S. Shahmorad, A matrix formulation of the Tau method and Voltera linear integro diferential equations, Korean J. Comput., 216, 2183-2198, 2002.
  • M.G¨ulsu, Y. ¨Ozt¨urk, M.Sezer, A new colacation method for solution of mixed linear integro-differential-difference equations, Appl. Math. Comput., 216, 2183-2198, 2010.
  • M.Sezer, M.G¨ulsu, Polynomial solution of the most general linear Fredholm-integro diferential difference equation by means of Taylor matrix method, Int.J.Complex Variables,50,5367 - 382,2005.
  • M.G¨ulsu, M.Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int.J.Comput. Math. 82, 5, 629 - 642, 2005.
  • S¸.Y¨uzbas¸ı, N. S¸ahin, M.Sezer, Bessel polynomial solutions of the high-order linear Voltera integro-diferential equations, Comput. Math. Appl. 62, 4, 1940 - 1956, 2011.
  • N.Kurt, M.Sezer, Polynomial solution of high-order Linear Fredholm integro-diferential equa-tions with constant coeficients, Journal of Franklin Institute, 345, 839 - 850, 2008.
  • M.Sezer, A.A. Das¸cıo˘glu, Taylor polynomial solutions of general linear diferential-difference equations with variable coeficients, Apply. Math. Comput. 174, 1526 - 1538, 2006.
  • S.Yalc¸ınbas¸, N. ¨Ozsoy, M.Sezer, Approximate solution of higher order linear diferential equations by means of a new rational Chebyshev collocation method, mathematical and computational Applications, 5, 1, 45 - 56, 2010.
  • N.Akg¨on¨ul, N.S¸ahin, M.Sezer, A Hermite collocation method for the approximate solutions of high-order linear Fredholm integro- diferential equations, 27, 6, 1707 - 1721, 2011.
  • O.R.Is¸ık, M.Sezer, Z.G¨uney, Berstein series solution of a class of linear integro-diferential equations with weakly singular kernel, Appl. Math. Comput. 217, 16, 7009 - 7020, 2011.
  • B.G¨urb¨uz, M.G¨ulsu, M.Sezer, Numerical approach of high-order linear delay difference equations with variable in terms of Laguerre polynomials, Mathematical and Computational Applications, 16, 1, 267 - 278, 2011.
  • F.Alharbi, Predened exponential basis set for half-bounded multi-domain spectral method, Applied mathematics, Scientific Research, 1, 146 - 152, 2010.
  • J.H.Laning, R.H.Battin, Random processes in Automatic Control, McGraw-Hill, New York, 9, 1956.
  • V.Cizek, Methods of Time Domain Synthes Research Report z-44, Czechoslovak Academy of Sciences, Institute of Radioelektronics, Praha, 1960.
  • A.A.Dimitriyev, Orthogonal Exponential Functions in Hydrometeorology, Gidro-meteoizdat, Leningrad, 1973.
  • O.Jaroch, Approximation by Exponential Functions, Aplikace matematiky, 7, 4, 249 - 264,1962.
  • V.S.Chelyshkov, Sequence of exponential polynomials which are orthogonal on the semi-exis, Reports of the Academy of Sciences of the Uk SSR, ( Dohlady AN Uk SSR ), ser.A, 14- 47, 1997.
  • B.J.C.Baxter, A.Iserles, On approximation by exponentials, Annals of Num. Math., 4, 39 -54, 1997.
  • V.S.Chelyshkov, A variant of spectral method in the theory of hydrodynamic stability, Hydromachanics ( Gidromekhanica ), 68, 105 - 109, 1994.
  • V.T.Grinchenko, V.S.Chelyshkov, Direct Numerical simulation of boundary layer transition, in Near Wall Turbulent Flows R.M.C. So, C.G.Speziale and B.E. Launder ( Editors ), Elsevier Science Publishers B.V., 889 - 897, 1993.

Mehmet Ali Balci1and Mehmet Sezer2

Year 2015, Volume: 3 Issue: 2, 44 - 54, 19.01.2015

Abstract

References

  • S.Yalc¸ınbas¸, M.Sezer, The approximate solution of high-order linear Voltera-fredholm Integro-Differential equations in term of Taylor Polynomials, Apply. Math. Comput., 112, 291-308, 2000.
  • W.Wang, An Algorithm for solving the high-order nonlinear Voltera-fredholm Integro-Differential equations with mechanization, Apply. Math. Comput., 172, 1-23, 2006.
  • Y.Ben, B. Zhang, H. Qiao, A simple Taylor series expansion method for a class of second kind integral equations, J. Comp Appl. Math., 110, 15-24, 1999.
  • K. Maleknejad, Y. Mahmoud, Numerical solution of linear Fredholm Integral Equations by using hybrid Taylor and block-pulse functions, Apply. Math. Comput., 149, 799-806, 2004.
  • M.T. Rashed, Numerical solution of functional differential, integral and integro-differential equations, Appl. Numer. Math., 156, 485-492, 2004.
  • W.Wang, C. Lin, A new algorithm for integral of trigonometric functions with mechanization, Apply. Math. Comput., 164(1), 71-82, 2005.
  • M.Sezer, M.G¨ulsu, A new polynomial approach for solving difference and Fredholm integro-differential equations with mixed argument, Apply. Math. Comput., 171, 332-344, 2005.
  • S.Yalc¸ınbas¸, M.Sezer, H.H. Sorkun, Legendre polynomial solutions of high-order linear Fredholm integro-differential equations, Apply. Math. Comput., 210, 334-349, 2009.
  • M.G¨ulsu, M.Sezer, A Taylor polynomial approach for solving differential-difference equations, J. Comp Appl. Math., 186, 349- 364, 2006.
  • L.M. Delves, J.L. Mohamed, Computational Methods for integral equations, Cambridge University Press, Cambridge, 1985.
  • M. Razzagi, S. Yousefi, Legendre wavelets method for the nonlinear Voltera-Fredholm integral equations, Math. Comput. Simul., 70, 1-8, 2005.
  • S.Shahmorad, Numerical solution of general form linear Fredholm-Voltera integro-differential equations by the Tau Method with an error estimation, Appl. Math. Comput., 167, 1418-1424, 2005.
  • S.M. Hosseini, S. Shahmorad, A matrix formulation of the Tau method and Voltera linear integro diferential equations, Korean J. Comput., 216, 2183-2198, 2002.
  • M.G¨ulsu, Y. ¨Ozt¨urk, M.Sezer, A new colacation method for solution of mixed linear integro-differential-difference equations, Appl. Math. Comput., 216, 2183-2198, 2010.
  • M.Sezer, M.G¨ulsu, Polynomial solution of the most general linear Fredholm-integro diferential difference equation by means of Taylor matrix method, Int.J.Complex Variables,50,5367 - 382,2005.
  • M.G¨ulsu, M.Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int.J.Comput. Math. 82, 5, 629 - 642, 2005.
  • S¸.Y¨uzbas¸ı, N. S¸ahin, M.Sezer, Bessel polynomial solutions of the high-order linear Voltera integro-diferential equations, Comput. Math. Appl. 62, 4, 1940 - 1956, 2011.
  • N.Kurt, M.Sezer, Polynomial solution of high-order Linear Fredholm integro-diferential equa-tions with constant coeficients, Journal of Franklin Institute, 345, 839 - 850, 2008.
  • M.Sezer, A.A. Das¸cıo˘glu, Taylor polynomial solutions of general linear diferential-difference equations with variable coeficients, Apply. Math. Comput. 174, 1526 - 1538, 2006.
  • S.Yalc¸ınbas¸, N. ¨Ozsoy, M.Sezer, Approximate solution of higher order linear diferential equations by means of a new rational Chebyshev collocation method, mathematical and computational Applications, 5, 1, 45 - 56, 2010.
  • N.Akg¨on¨ul, N.S¸ahin, M.Sezer, A Hermite collocation method for the approximate solutions of high-order linear Fredholm integro- diferential equations, 27, 6, 1707 - 1721, 2011.
  • O.R.Is¸ık, M.Sezer, Z.G¨uney, Berstein series solution of a class of linear integro-diferential equations with weakly singular kernel, Appl. Math. Comput. 217, 16, 7009 - 7020, 2011.
  • B.G¨urb¨uz, M.G¨ulsu, M.Sezer, Numerical approach of high-order linear delay difference equations with variable in terms of Laguerre polynomials, Mathematical and Computational Applications, 16, 1, 267 - 278, 2011.
  • F.Alharbi, Predened exponential basis set for half-bounded multi-domain spectral method, Applied mathematics, Scientific Research, 1, 146 - 152, 2010.
  • J.H.Laning, R.H.Battin, Random processes in Automatic Control, McGraw-Hill, New York, 9, 1956.
  • V.Cizek, Methods of Time Domain Synthes Research Report z-44, Czechoslovak Academy of Sciences, Institute of Radioelektronics, Praha, 1960.
  • A.A.Dimitriyev, Orthogonal Exponential Functions in Hydrometeorology, Gidro-meteoizdat, Leningrad, 1973.
  • O.Jaroch, Approximation by Exponential Functions, Aplikace matematiky, 7, 4, 249 - 264,1962.
  • V.S.Chelyshkov, Sequence of exponential polynomials which are orthogonal on the semi-exis, Reports of the Academy of Sciences of the Uk SSR, ( Dohlady AN Uk SSR ), ser.A, 14- 47, 1997.
  • B.J.C.Baxter, A.Iserles, On approximation by exponentials, Annals of Num. Math., 4, 39 -54, 1997.
  • V.S.Chelyshkov, A variant of spectral method in the theory of hydrodynamic stability, Hydromachanics ( Gidromekhanica ), 68, 105 - 109, 1994.
  • V.T.Grinchenko, V.S.Chelyshkov, Direct Numerical simulation of boundary layer transition, in Near Wall Turbulent Flows R.M.C. So, C.G.Speziale and B.E. Launder ( Editors ), Elsevier Science Publishers B.V., 889 - 897, 1993.
There are 32 citations in total.

Details

Journal Section Articles
Authors

Mehmet Balci This is me

Mehmet Sezer This is me

Publication Date January 19, 2015
Published in Issue Year 2015 Volume: 3 Issue: 2

Cite

APA Balci, M., & Sezer, M. (2015). Mehmet Ali Balci1and Mehmet Sezer2. New Trends in Mathematical Sciences, 3(2), 44-54.
AMA Balci M, Sezer M. Mehmet Ali Balci1and Mehmet Sezer2. New Trends in Mathematical Sciences. January 2015;3(2):44-54.
Chicago Balci, Mehmet, and Mehmet Sezer. “Mehmet Ali Balci1and Mehmet Sezer2”. New Trends in Mathematical Sciences 3, no. 2 (January 2015): 44-54.
EndNote Balci M, Sezer M (January 1, 2015) Mehmet Ali Balci1and Mehmet Sezer2. New Trends in Mathematical Sciences 3 2 44–54.
IEEE M. Balci and M. Sezer, “Mehmet Ali Balci1and Mehmet Sezer2”, New Trends in Mathematical Sciences, vol. 3, no. 2, pp. 44–54, 2015.
ISNAD Balci, Mehmet - Sezer, Mehmet. “Mehmet Ali Balci1and Mehmet Sezer2”. New Trends in Mathematical Sciences 3/2 (January 2015), 44-54.
JAMA Balci M, Sezer M. Mehmet Ali Balci1and Mehmet Sezer2. New Trends in Mathematical Sciences. 2015;3:44–54.
MLA Balci, Mehmet and Mehmet Sezer. “Mehmet Ali Balci1and Mehmet Sezer2”. New Trends in Mathematical Sciences, vol. 3, no. 2, 2015, pp. 44-54.
Vancouver Balci M, Sezer M. Mehmet Ali Balci1and Mehmet Sezer2. New Trends in Mathematical Sciences. 2015;3(2):44-5.