In this paper we are using the notions of not belonging (∈) and non quasi-k-coincidenceqk ( ) of an interval valued fuzzypoint with an interval valued fuzzy set, we define the concepts of interval valued (∈,∈ ∨ qk)-fuzzy normal subgroups and interval valued(∈,∈ ∨ qk)-fuzzy cosets which is a generalization of fuzzy normal subgroups, fuzzy coset, interval valued fuzzy normal subgroups,interval valued fuzzy coset, interval valued (∈,∈ ∨ q)-fuzzy normal subgroups and interval valued (∈,∈ ∨ q)-fuzzy cosets. We givesome characterizations of an interval valued (∈,∈ ∨ qk)-fuzzy normal subgroup and interval valued (∈,∈ ∨ qk)-fuzzy coset, and dealwith several related properties. The important achievement of the study with an interval valued (∈,∈ ∨ qk)-fuzzy normal subgroupand interval valued (∈,∈ ∨ qk)-fuzzy cosets is the generalization of that the notions of fuzzy normal subgroups, fuzzy coset, intervalvalued fuzzy normal subgroups, interval valued fuzzy coset, interval valued (∈,∈ ∨ q)-fuzzy normal subgroups and interval valued(∈,∈ ∨ q)-fuzzy cosets. We prove that the set of all interval valued (∈,∈ ∨ qk)-fuzzy cosets of G is a group, where the multiplicationis defined byλx·λy=λxyfor all x, y∈ G. Ifµ : F → D[0,1] is defined by µ←−←−(←−)λx =λ (x) for all x ∈ G. Then µ is an interval valued( )-fuzzy normal subgroup of F
Group normal subgroup coset interval valued (∈ ∈ ∨ qk)-fuzzy normal subgroup interval valued (∈ ∈ ∨ qk)-fuzzy coset
Journal Section | Articles |
---|---|
Authors | |
Publication Date | December 22, 2014 |
Published in Issue | Year 2015 Volume: 3 Issue: 1 |