BibTex RIS Cite

Joint Laplace-Fourier Transforms For Fractional PDEs

Year 2014, Volume: 2 Issue: 3, 166 - 177, 01.12.2014

Abstract

In this paper, the authors implemented one dimensional Laplace transform to evaluate certain integrals, series and solve non homogeneous fractional PDEs. Illustrative examples are also provided. The results reveal that the integral transforms are very effective and convenient

References

  • A.Aghili, H.Zeinali, Integral transform method for solving Volterra Singular integral equations and non homogenous time Fractional PDEs. Gen.Math.Notes, Vol.14, No.1, January 2013, pp.6-20.
  • A.Aghili, H.Zeinali, Integral transform methods for solving fractional PDEs and evaluation of certain integrals and series. Intern journal of physics and mathematical sciences, Vol.2(4),2012.
  • V.A. Ditkin. and Prudnikov,A.P.: Operational Calculus In Two Variables and Its Application ,Pergamon Press, New York,1962.
  • W.W.Bell, Special functions for scientists and engineers, D.Van Nostrand company LTD, Canada, 1968.
  • D.G.Duffy, Transform methods for solving partial differential equations, Chapman and Hall/CRC NewYork,2004.
  • H.J.Glaeske, A.P.Prudnikov, K.A.Skornik, Operational calculus and related topics, Chapman and Hall/CRC, USA, 2006.
  • I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA,1999.
  • A.. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, Chapman and Hall/CRC, USA, 2008.

1. Introduction and Notations

Year 2014, Volume: 2 Issue: 3, 166 - 177, 01.12.2014

Abstract

References

  • A.Aghili, H.Zeinali, Integral transform method for solving Volterra Singular integral equations and non homogenous time Fractional PDEs. Gen.Math.Notes, Vol.14, No.1, January 2013, pp.6-20.
  • A.Aghili, H.Zeinali, Integral transform methods for solving fractional PDEs and evaluation of certain integrals and series. Intern journal of physics and mathematical sciences, Vol.2(4),2012.
  • V.A. Ditkin. and Prudnikov,A.P.: Operational Calculus In Two Variables and Its Application ,Pergamon Press, New York,1962.
  • W.W.Bell, Special functions for scientists and engineers, D.Van Nostrand company LTD, Canada, 1968.
  • D.G.Duffy, Transform methods for solving partial differential equations, Chapman and Hall/CRC NewYork,2004.
  • H.J.Glaeske, A.P.Prudnikov, K.A.Skornik, Operational calculus and related topics, Chapman and Hall/CRC, USA, 2006.
  • I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA,1999.
  • A.. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, Chapman and Hall/CRC, USA, 2008.
There are 8 citations in total.

Details

Journal Section Articles
Authors

Arman Aghili This is me

Homa Zeinali This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 3

Cite

APA Aghili, A., & Zeinali, H. (2014). 1. Introduction and Notations. New Trends in Mathematical Sciences, 2(3), 166-177.
AMA Aghili A, Zeinali H. 1. Introduction and Notations. New Trends in Mathematical Sciences. December 2014;2(3):166-177.
Chicago Aghili, Arman, and Homa Zeinali. “1. Introduction and Notations”. New Trends in Mathematical Sciences 2, no. 3 (December 2014): 166-77.
EndNote Aghili A, Zeinali H (December 1, 2014) 1. Introduction and Notations. New Trends in Mathematical Sciences 2 3 166–177.
IEEE A. Aghili and H. Zeinali, “1. Introduction and Notations”, New Trends in Mathematical Sciences, vol. 2, no. 3, pp. 166–177, 2014.
ISNAD Aghili, Arman - Zeinali, Homa. “1. Introduction and Notations”. New Trends in Mathematical Sciences 2/3 (December 2014), 166-177.
JAMA Aghili A, Zeinali H. 1. Introduction and Notations. New Trends in Mathematical Sciences. 2014;2:166–177.
MLA Aghili, Arman and Homa Zeinali. “1. Introduction and Notations”. New Trends in Mathematical Sciences, vol. 2, no. 3, 2014, pp. 166-77.
Vancouver Aghili A, Zeinali H. 1. Introduction and Notations. New Trends in Mathematical Sciences. 2014;2(3):166-77.