BibTex RIS Cite

Accelerating convergence for backward Euler and trapezoid time discretization schemes

Year 2014, Volume: 2 Issue: 3, 214 - 220, 01.12.2014

Abstract

In this study, we introduce two algorithms to numerically solve any initial value problem (IVP). These algorithms dependon time relaxation model (TRM) which is obtained adding a time relaxation term into IVP. Discretizing TRM by using backward Euler(BE) method gives the first algorithm. Similarly, the second algorithm is followed by using trapezoid (TR) time stepping scheme . Undersome conditions, the first algorithm increases the order of convergence from one to two and the second one increases the order fromtwo to three. Thus, more accurate results can be obtained. To verify the accuracy of the methods, they are applied to some numericalexamples. Numerical results overlap with the theoretical results

References

  • N.A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in LES, Modern Simulation Strategies for Turbulent Flow, R. T. Edwards, 2001.
  • V.J. Ervin, W. Layton and M. Neda, Numerical analysis of a higher order time relaxation model of fluids, Int. J. Numer. Anal. Mod., 4 (2007) 648–670.
  • O.R. Isik, Spin up problem and accelerating convergence to steady state, Appl. Math. Modell. (2013) 3242-3253.
  • W. Layton and M. Neda, Truncation of scales by time relaxation, J. Math. Anal. Appl,325 ( 2007) 788–807.
  • W. Layton, C. David Pruett and L. G. Rebholz, Temporally regularized direct numerical simulation, Appl. Math. Comp. 216 (2010) 3728–3738.
  • M. Neda, Discontinuous Time Relaxation Method for the Time-Dependent Navier-Stokes Equations, Adv. Numer. Anal., Volume 2010, doi:10.1155/2010/419021.
  • C.D. Pruett, T.B. Gatski, C.E. Grosch and W.D. Thacker, The temporally filtered Navier–Stokes equations: properties of the residual- stress, Phys. Fluids, 15 (2003) 2127–2140.

Osman Rasit Isik1and Tarkan ¨Oner2

Year 2014, Volume: 2 Issue: 3, 214 - 220, 01.12.2014

Abstract

References

  • N.A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in LES, Modern Simulation Strategies for Turbulent Flow, R. T. Edwards, 2001.
  • V.J. Ervin, W. Layton and M. Neda, Numerical analysis of a higher order time relaxation model of fluids, Int. J. Numer. Anal. Mod., 4 (2007) 648–670.
  • O.R. Isik, Spin up problem and accelerating convergence to steady state, Appl. Math. Modell. (2013) 3242-3253.
  • W. Layton and M. Neda, Truncation of scales by time relaxation, J. Math. Anal. Appl,325 ( 2007) 788–807.
  • W. Layton, C. David Pruett and L. G. Rebholz, Temporally regularized direct numerical simulation, Appl. Math. Comp. 216 (2010) 3728–3738.
  • M. Neda, Discontinuous Time Relaxation Method for the Time-Dependent Navier-Stokes Equations, Adv. Numer. Anal., Volume 2010, doi:10.1155/2010/419021.
  • C.D. Pruett, T.B. Gatski, C.E. Grosch and W.D. Thacker, The temporally filtered Navier–Stokes equations: properties of the residual- stress, Phys. Fluids, 15 (2003) 2127–2140.
There are 7 citations in total.

Details

Journal Section Articles
Authors

Osman Raşit Işık This is me

Tarkan Öner This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 3

Cite

APA Işık, O. R., & Öner, T. (2014). Osman Rasit Isik1and Tarkan ¨Oner2. New Trends in Mathematical Sciences, 2(3), 214-220.
AMA Işık OR, Öner T. Osman Rasit Isik1and Tarkan ¨Oner2. New Trends in Mathematical Sciences. December 2014;2(3):214-220.
Chicago Işık, Osman Raşit, and Tarkan Öner. “Osman Rasit Isik1and Tarkan ¨Oner2”. New Trends in Mathematical Sciences 2, no. 3 (December 2014): 214-20.
EndNote Işık OR, Öner T (December 1, 2014) Osman Rasit Isik1and Tarkan ¨Oner2. New Trends in Mathematical Sciences 2 3 214–220.
IEEE O. R. Işık and T. Öner, “Osman Rasit Isik1and Tarkan ¨Oner2”, New Trends in Mathematical Sciences, vol. 2, no. 3, pp. 214–220, 2014.
ISNAD Işık, Osman Raşit - Öner, Tarkan. “Osman Rasit Isik1and Tarkan ¨Oner2”. New Trends in Mathematical Sciences 2/3 (December 2014), 214-220.
JAMA Işık OR, Öner T. Osman Rasit Isik1and Tarkan ¨Oner2. New Trends in Mathematical Sciences. 2014;2:214–220.
MLA Işık, Osman Raşit and Tarkan Öner. “Osman Rasit Isik1and Tarkan ¨Oner2”. New Trends in Mathematical Sciences, vol. 2, no. 3, 2014, pp. 214-20.
Vancouver Işık OR, Öner T. Osman Rasit Isik1and Tarkan ¨Oner2. New Trends in Mathematical Sciences. 2014;2(3):214-20.