BibTex RIS Cite

Socle-Regular QTAG-Modules

Year 2014, Volume: 2 Issue: 2, 129 - 133, 01.08.2014

Abstract

A right module over an associative ring with unity is a -module if every finitely generated submodule of any homomorphic image of is a direct sum of uniserial modules. In this paper we focus our attention to the socles of fully invariant submodules and introduce a new class of modules, which we term socle-regular -modules. This class is shown to be large and strictly contains the class of fully transitive modules. Also, here we investigated some basic properties of such modules

References

  • Fuchs L., Infinite Abelian Groups, Vol. I, Academic Press, New York, (1970).
  • Fuchs L., Infinite Abelian Groups, Vol. II, Academic Press, New York, (1973).
  • Hefzi M. A. and Singh S., On σ-pure submodules of QTAG-modules, Arch. Math., 46(1986), 501 − 510.
  • Kaplansky I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and 1969.
  • Khan, M.Z., Modules behaving like torsion abelian groups II, Math. Japonica, 23(5)(1979), 509 − 516.
  • Mehdi A., Abbasi M. Y. and Mehdi F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4(1), 1- 6, (2005).
  • Mehdi A., Abbasi M. Y. and Mehdi F., On (ω + n)-projective modules, Ganita Sandesh, 20(1), 27-32, (2006).
  • Mehdi A., Naji S.A.R.K and Hasan A., Small homomorphisms and large submodules of QTAG-modules, Scientia Series A., Math. Sci., 23(2012), 19-24.
  • Singh S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker N.Y. 25, 183-189, (1976).

Socle-regular -modules

Year 2014, Volume: 2 Issue: 2, 129 - 133, 01.08.2014

Abstract

References

  • Fuchs L., Infinite Abelian Groups, Vol. I, Academic Press, New York, (1970).
  • Fuchs L., Infinite Abelian Groups, Vol. II, Academic Press, New York, (1973).
  • Hefzi M. A. and Singh S., On σ-pure submodules of QTAG-modules, Arch. Math., 46(1986), 501 − 510.
  • Kaplansky I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and 1969.
  • Khan, M.Z., Modules behaving like torsion abelian groups II, Math. Japonica, 23(5)(1979), 509 − 516.
  • Mehdi A., Abbasi M. Y. and Mehdi F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4(1), 1- 6, (2005).
  • Mehdi A., Abbasi M. Y. and Mehdi F., On (ω + n)-projective modules, Ganita Sandesh, 20(1), 27-32, (2006).
  • Mehdi A., Naji S.A.R.K and Hasan A., Small homomorphisms and large submodules of QTAG-modules, Scientia Series A., Math. Sci., 23(2012), 19-24.
  • Singh S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker N.Y. 25, 183-189, (1976).
There are 9 citations in total.

Details

Journal Section Articles
Authors

Fahad Sikander This is me

Ayazul Hasan This is me

Alveera Mehdi This is me

Publication Date August 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 2

Cite

APA Sikander, F., Hasan, A., & Mehdi, A. (2014). Socle-regular -modules. New Trends in Mathematical Sciences, 2(2), 129-133.
AMA Sikander F, Hasan A, Mehdi A. Socle-regular -modules. New Trends in Mathematical Sciences. August 2014;2(2):129-133.
Chicago Sikander, Fahad, Ayazul Hasan, and Alveera Mehdi. “Socle-Regular -Modules”. New Trends in Mathematical Sciences 2, no. 2 (August 2014): 129-33.
EndNote Sikander F, Hasan A, Mehdi A (August 1, 2014) Socle-regular -modules. New Trends in Mathematical Sciences 2 2 129–133.
IEEE F. Sikander, A. Hasan, and A. Mehdi, “Socle-regular -modules”, New Trends in Mathematical Sciences, vol. 2, no. 2, pp. 129–133, 2014.
ISNAD Sikander, Fahad et al. “Socle-Regular -Modules”. New Trends in Mathematical Sciences 2/2 (August 2014), 129-133.
JAMA Sikander F, Hasan A, Mehdi A. Socle-regular -modules. New Trends in Mathematical Sciences. 2014;2:129–133.
MLA Sikander, Fahad et al. “Socle-Regular -Modules”. New Trends in Mathematical Sciences, vol. 2, no. 2, 2014, pp. 129-33.
Vancouver Sikander F, Hasan A, Mehdi A. Socle-regular -modules. New Trends in Mathematical Sciences. 2014;2(2):129-33.