BibTex RIS Cite

The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups

Year 2014, Volume: 2 Issue: 2, 59 - 63, 01.08.2014

Abstract

In [7], the authors defined the generalized order-k Jacobsthal orbit we obtain the generalized order-k Jacobsthal lengths of the centro-polyhedral groups 〈2, − , 2〉, 〈−2, , 2〉 and 〈2, , −2〉.( ) of a finitely generated group = 〈 〉. In this study

References

  • Knox S.W. Fibonacci sequences in finite groups, The Fibonacci Quarterly, 30.2 (1992) p. 116-120.
  • Koken F., Bozkurt D. On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sciences, 3(13) (2008) p. 605-614. [12]. Lü K., Wang J. k-step Fibonacci sequence modulo m. Util. Math., 71 (2007) p. 169-178. [13]. Tascı D. Pell Padovan numbers and polynomials. IV. Congress of The Türkic World Mathematical Society, Bakü, Azerbaycan, 2011.
  • Wall D.D. Fibonacci series modulo . Amer. Math. Monthly, 67 (1960) p.525-532.
  • Yilmaz F., Bozkurt D. The generalized order-k Jacobsthal numbers. Int. J. Contemp. Math. Sciences, 4(34) (2009) p.1685-1694.
Year 2014, Volume: 2 Issue: 2, 59 - 63, 01.08.2014

Abstract

References

  • Knox S.W. Fibonacci sequences in finite groups, The Fibonacci Quarterly, 30.2 (1992) p. 116-120.
  • Koken F., Bozkurt D. On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sciences, 3(13) (2008) p. 605-614. [12]. Lü K., Wang J. k-step Fibonacci sequence modulo m. Util. Math., 71 (2007) p. 169-178. [13]. Tascı D. Pell Padovan numbers and polynomials. IV. Congress of The Türkic World Mathematical Society, Bakü, Azerbaycan, 2011.
  • Wall D.D. Fibonacci series modulo . Amer. Math. Monthly, 67 (1960) p.525-532.
  • Yilmaz F., Bozkurt D. The generalized order-k Jacobsthal numbers. Int. J. Contemp. Math. Sciences, 4(34) (2009) p.1685-1694.
There are 4 citations in total.

Details

Journal Section Articles
Authors

Omur Deveci This is me

Hasan Ozturk This is me

Publication Date August 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 2

Cite

APA Deveci, O., & Ozturk, H. (2014). The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups. New Trends in Mathematical Sciences, 2(2), 59-63.
AMA Deveci O, Ozturk H. The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups. New Trends in Mathematical Sciences. August 2014;2(2):59-63.
Chicago Deveci, Omur, and Hasan Ozturk. “The Generalized Order-K Jacobsthal Lengths of The Some Centro-Polyhedral Groups”. New Trends in Mathematical Sciences 2, no. 2 (August 2014): 59-63.
EndNote Deveci O, Ozturk H (August 1, 2014) The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups. New Trends in Mathematical Sciences 2 2 59–63.
IEEE O. Deveci and H. Ozturk, “The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups”, New Trends in Mathematical Sciences, vol. 2, no. 2, pp. 59–63, 2014.
ISNAD Deveci, Omur - Ozturk, Hasan. “The Generalized Order-K Jacobsthal Lengths of The Some Centro-Polyhedral Groups”. New Trends in Mathematical Sciences 2/2 (August 2014), 59-63.
JAMA Deveci O, Ozturk H. The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups. New Trends in Mathematical Sciences. 2014;2:59–63.
MLA Deveci, Omur and Hasan Ozturk. “The Generalized Order-K Jacobsthal Lengths of The Some Centro-Polyhedral Groups”. New Trends in Mathematical Sciences, vol. 2, no. 2, 2014, pp. 59-63.
Vancouver Deveci O, Ozturk H. The Generalized Order-k Jacobsthal Lengths of The Some Centro-Polyhedral Groups. New Trends in Mathematical Sciences. 2014;2(2):59-63.