BibTex RIS Cite

The Rate of $\chi$-space Defined by a Modulus

Year 2014, Volume: 2 Issue: 2, 78 - 86, 01.08.2014

Abstract

In this paper we introduce the modulus function of characterize the duals of the . We establish some inclusion relations, topological results and we sequence spaces

References

  • [3] [4] [5] [6] [7] [8] [9] [10] Nakano, Concave modulus, J. Math. Soc. Japan, 5(1953), 29-49.
  • W. Orlicz, Über Raume (
  • W.H. Ruckle, FK Spaces in which the sequence of coordinate vector is bounded, Canada, J. Math., 25 (1973), 973-978.
  • S.M. Sirajindeen, Matrix transformation of 0( ), ∞( ), and into , Indian J. Pure Appl. Math., 12(9) (1981), 1106-1113.
  • S. Sridhar, A matrix transformation between some sequence Spaces, Acta Ciencia Indica, 5(1979), 194-197.
  • B.C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3) (2003), 175-192.
  • A. Wilansky, Summability through functional analysis, North Holland, Mathematical Studies, North-Holland Publishing, Amsterdam,Vol. 85(1984).

The rate of -space defined by a modulus

Year 2014, Volume: 2 Issue: 2, 78 - 86, 01.08.2014

Abstract

References

  • [3] [4] [5] [6] [7] [8] [9] [10] Nakano, Concave modulus, J. Math. Soc. Japan, 5(1953), 29-49.
  • W. Orlicz, Über Raume (
  • W.H. Ruckle, FK Spaces in which the sequence of coordinate vector is bounded, Canada, J. Math., 25 (1973), 973-978.
  • S.M. Sirajindeen, Matrix transformation of 0( ), ∞( ), and into , Indian J. Pure Appl. Math., 12(9) (1981), 1106-1113.
  • S. Sridhar, A matrix transformation between some sequence Spaces, Acta Ciencia Indica, 5(1979), 194-197.
  • B.C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3) (2003), 175-192.
  • A. Wilansky, Summability through functional analysis, North Holland, Mathematical Studies, North-Holland Publishing, Amsterdam,Vol. 85(1984).
There are 7 citations in total.

Details

Journal Section Articles
Authors

Nagarajan Subramanian This is me

Periyanan Thirunavukkarasu This is me

Raman Babu This is me

Publication Date August 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 2

Cite

APA Subramanian, N., Thirunavukkarasu, P., & Babu, R. (2014). The rate of -space defined by a modulus. New Trends in Mathematical Sciences, 2(2), 78-86.
AMA Subramanian N, Thirunavukkarasu P, Babu R. The rate of -space defined by a modulus. New Trends in Mathematical Sciences. August 2014;2(2):78-86.
Chicago Subramanian, Nagarajan, Periyanan Thirunavukkarasu, and Raman Babu. “The Rate of -Space Defined by a Modulus”. New Trends in Mathematical Sciences 2, no. 2 (August 2014): 78-86.
EndNote Subramanian N, Thirunavukkarasu P, Babu R (August 1, 2014) The rate of -space defined by a modulus. New Trends in Mathematical Sciences 2 2 78–86.
IEEE N. Subramanian, P. Thirunavukkarasu, and R. Babu, “The rate of -space defined by a modulus”, New Trends in Mathematical Sciences, vol. 2, no. 2, pp. 78–86, 2014.
ISNAD Subramanian, Nagarajan et al. “The Rate of -Space Defined by a Modulus”. New Trends in Mathematical Sciences 2/2 (August 2014), 78-86.
JAMA Subramanian N, Thirunavukkarasu P, Babu R. The rate of -space defined by a modulus. New Trends in Mathematical Sciences. 2014;2:78–86.
MLA Subramanian, Nagarajan et al. “The Rate of -Space Defined by a Modulus”. New Trends in Mathematical Sciences, vol. 2, no. 2, 2014, pp. 78-86.
Vancouver Subramanian N, Thirunavukkarasu P, Babu R. The rate of -space defined by a modulus. New Trends in Mathematical Sciences. 2014;2(2):78-86.