BibTex RIS Cite

The best approximation of $P-$ metric space of $\chi^{2}-$ defined by Musielak

Year 2014, Volume: 2 Issue: 1, 23 - 34, 01.04.2014

Abstract

In this paper, we introduce the idea of constructing sequence space Musielak and also construct some general topological properties of approximation of of best approximation in metric defined by

References

  • B.Altay and F.Başar, Some new spaces of double sequences, F.Başar and Y.Sever, The space M.Basarir and O.Solancan, On some double sequence spaces, J.Indian Acad. Math., 21(2) (1999), 193-200.
  • T.J.I’ A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York,(1965).
  • J.Cannor, On strong matrix summability with respect to amodul us and statistical convergence, Canad. Math. Bull., 32(2), (1989),194-198
  • A.Gökhan and R.Çolak, The double sequence spaces ( ) and A.Gökhan and R.Çolak, Double sequence spaces G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc.,19(1917),8695.
  • H.J.Hamilton, Transformations of multiple sequences, DukeMath.J.,2,(1936),29-60.
  • J.Math. Anal. Appl., 309(1), (2005), 70-90. of double sequences ,Math. J. Okayama Univ, 51, (2009), 149157.
  • ( ) , Appl. Math.Comput., 157(2),(2004),491-501. , 160(1),(2005),147-153. ------, A Generalization of multiple sequences transformation, DukeMath.J.,4,(1938),343358. ------, Preservation of partial Limits in Multiple sequence transformations, DukeMath.J., 4,(1939),293-297
  • P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes,Pure and Applied Mathematics, 65 Marcel Dekker,Inc.,NewYork,1981.
  • F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math.Proc.Camb.Phil.Soc.,104,(1988),283-294.
  • A.Wilansky, Summability through Functiona lAnalysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam,Vol.85(1984).
  • M.Zeltser, Investigation of Double Sequence Spaces by Softand Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ.ofTartu, Faculty of Mathematics and Computer Science,Tartu,2001

The best approximation of metric space of defined by

Year 2014, Volume: 2 Issue: 1, 23 - 34, 01.04.2014

Abstract

References

  • B.Altay and F.Başar, Some new spaces of double sequences, F.Başar and Y.Sever, The space M.Basarir and O.Solancan, On some double sequence spaces, J.Indian Acad. Math., 21(2) (1999), 193-200.
  • T.J.I’ A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York,(1965).
  • J.Cannor, On strong matrix summability with respect to amodul us and statistical convergence, Canad. Math. Bull., 32(2), (1989),194-198
  • A.Gökhan and R.Çolak, The double sequence spaces ( ) and A.Gökhan and R.Çolak, Double sequence spaces G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc.,19(1917),8695.
  • H.J.Hamilton, Transformations of multiple sequences, DukeMath.J.,2,(1936),29-60.
  • J.Math. Anal. Appl., 309(1), (2005), 70-90. of double sequences ,Math. J. Okayama Univ, 51, (2009), 149157.
  • ( ) , Appl. Math.Comput., 157(2),(2004),491-501. , 160(1),(2005),147-153. ------, A Generalization of multiple sequences transformation, DukeMath.J.,4,(1938),343358. ------, Preservation of partial Limits in Multiple sequence transformations, DukeMath.J., 4,(1939),293-297
  • P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes,Pure and Applied Mathematics, 65 Marcel Dekker,Inc.,NewYork,1981.
  • F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math.Proc.Camb.Phil.Soc.,104,(1988),283-294.
  • A.Wilansky, Summability through Functiona lAnalysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam,Vol.85(1984).
  • M.Zeltser, Investigation of Double Sequence Spaces by Softand Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ.ofTartu, Faculty of Mathematics and Computer Science,Tartu,2001
There are 11 citations in total.

Details

Journal Section Articles
Authors

N. Subramanian This is me

N. Saivaraju This is me

S. Velmurugan This is me

Publication Date April 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 1

Cite

APA Subramanian, N., Saivaraju, N., & Velmurugan, S. (2014). The best approximation of metric space of defined by. New Trends in Mathematical Sciences, 2(1), 23-34.
AMA Subramanian N, Saivaraju N, Velmurugan S. The best approximation of metric space of defined by. New Trends in Mathematical Sciences. April 2014;2(1):23-34.
Chicago Subramanian, N., N. Saivaraju, and S. Velmurugan. “The Best Approximation of Metric Space of Defined by”. New Trends in Mathematical Sciences 2, no. 1 (April 2014): 23-34.
EndNote Subramanian N, Saivaraju N, Velmurugan S (April 1, 2014) The best approximation of metric space of defined by. New Trends in Mathematical Sciences 2 1 23–34.
IEEE N. Subramanian, N. Saivaraju, and S. Velmurugan, “The best approximation of metric space of defined by”, New Trends in Mathematical Sciences, vol. 2, no. 1, pp. 23–34, 2014.
ISNAD Subramanian, N. et al. “The Best Approximation of Metric Space of Defined by”. New Trends in Mathematical Sciences 2/1 (April 2014), 23-34.
JAMA Subramanian N, Saivaraju N, Velmurugan S. The best approximation of metric space of defined by. New Trends in Mathematical Sciences. 2014;2:23–34.
MLA Subramanian, N. et al. “The Best Approximation of Metric Space of Defined by”. New Trends in Mathematical Sciences, vol. 2, no. 1, 2014, pp. 23-34.
Vancouver Subramanian N, Saivaraju N, Velmurugan S. The best approximation of metric space of defined by. New Trends in Mathematical Sciences. 2014;2(1):23-34.