BibTex RIS Cite

On a special type nearly quasi-Einstein manifold

Year 2016, Volume: 4 Issue: 1, 100 - 105, 30.01.2016

Abstract

In the present paper, we consider a special type of nearly quasi-Einstein manifold denoted byN(QE)n. Most of the sections are based on some properties ofN(QE)n. We give some theorems about these manifolds. In the last section, a special type

References

  • Chaki, M. C., Maity, R. K., On quasi-Einstein manifolds, Publ. Math. Debrecen, 57, (2000), 297-306.
  • De, U. C., Gazi, A. K., On nearly quasi-Einstein manifolds, Novi Sad J. Math., 38(2), (2008), 115-121.
  • De, U. C., Guha, N., Kamilya, D, On generalized Ricci-recurrent manifolds, Tensor N. S., 56, (1995), 312-317.
  • Deszcz, R., Glogowska, M., Hotlos, M., Senturk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math., 41, (1998), 151-164.
  • Gazi, A. K., De, U. C., On the existence of nearly quasi-Einstein manifolds, Novi Sad J. Math., 39(2), (2009), 111-117.
  • Patterson, E. M., Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27, (1952), 287-295.
  • Prakasha, D. G., Bagewadi, C. S., On nearly quasi-Einstein manifolds, Mathematica Pannonica, 21(2), (2010), 265-273.
  • Singh, R. N., Pandey, M. K., Gautam, D., On nearly quasi Einstein manifold, Int. Journal of Math. Analysis., 5(36), (2011), 1767-1773.
  • Walker, M., Penrose, R., On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys., 18, (1970), 265- 274.
  • Yano, K., On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20(6), (1944), 340-345.

On a Special Type Nearly Quasi-Einstein Manifold

Year 2016, Volume: 4 Issue: 1, 100 - 105, 30.01.2016

Abstract

References

  • Chaki, M. C., Maity, R. K., On quasi-Einstein manifolds, Publ. Math. Debrecen, 57, (2000), 297-306.
  • De, U. C., Gazi, A. K., On nearly quasi-Einstein manifolds, Novi Sad J. Math., 38(2), (2008), 115-121.
  • De, U. C., Guha, N., Kamilya, D, On generalized Ricci-recurrent manifolds, Tensor N. S., 56, (1995), 312-317.
  • Deszcz, R., Glogowska, M., Hotlos, M., Senturk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math., 41, (1998), 151-164.
  • Gazi, A. K., De, U. C., On the existence of nearly quasi-Einstein manifolds, Novi Sad J. Math., 39(2), (2009), 111-117.
  • Patterson, E. M., Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27, (1952), 287-295.
  • Prakasha, D. G., Bagewadi, C. S., On nearly quasi-Einstein manifolds, Mathematica Pannonica, 21(2), (2010), 265-273.
  • Singh, R. N., Pandey, M. K., Gautam, D., On nearly quasi Einstein manifold, Int. Journal of Math. Analysis., 5(36), (2011), 1767-1773.
  • Walker, M., Penrose, R., On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys., 18, (1970), 265- 274.
  • Yano, K., On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20(6), (1944), 340-345.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Fusun Ozen Zengin This is me

Bahar Kirik This is me

Publication Date January 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Zengin, F. O., & Kirik, B. (2016). On a special type nearly quasi-Einstein manifold. New Trends in Mathematical Sciences, 4(1), 100-105.
AMA Zengin FO, Kirik B. On a special type nearly quasi-Einstein manifold. New Trends in Mathematical Sciences. January 2016;4(1):100-105.
Chicago Zengin, Fusun Ozen, and Bahar Kirik. “On a Special Type Nearly Quasi-Einstein Manifold”. New Trends in Mathematical Sciences 4, no. 1 (January 2016): 100-105.
EndNote Zengin FO, Kirik B (January 1, 2016) On a special type nearly quasi-Einstein manifold. New Trends in Mathematical Sciences 4 1 100–105.
IEEE F. O. Zengin and B. Kirik, “On a special type nearly quasi-Einstein manifold”, New Trends in Mathematical Sciences, vol. 4, no. 1, pp. 100–105, 2016.
ISNAD Zengin, Fusun Ozen - Kirik, Bahar. “On a Special Type Nearly Quasi-Einstein Manifold”. New Trends in Mathematical Sciences 4/1 (January 2016), 100-105.
JAMA Zengin FO, Kirik B. On a special type nearly quasi-Einstein manifold. New Trends in Mathematical Sciences. 2016;4:100–105.
MLA Zengin, Fusun Ozen and Bahar Kirik. “On a Special Type Nearly Quasi-Einstein Manifold”. New Trends in Mathematical Sciences, vol. 4, no. 1, 2016, pp. 100-5.
Vancouver Zengin FO, Kirik B. On a special type nearly quasi-Einstein manifold. New Trends in Mathematical Sciences. 2016;4(1):100-5.