Research Article
BibTex RIS Cite

Vibration analysis of a mass on a spring by means of magnus expansion method

Year 2016, Volume: 4 Issue: 2, 90 - 112, 01.03.2016

Abstract

In this paper, the differential equation for the motion of a mass on a spring is investigated, solutions of six different cases were analyzed and numerical solutions are obtained by means of Magnus Expansion Method. Any truncation of the Magnus series preserves qualitative geometric properties of the exact solution (Castellano et al. 2014). This is an important advantage of the Magnus expansion method. Therefore Magnus expansion method provides more accurate solutions than other frequently used numerical schemes. Finally the numerical results obtained by the present method and the analytical results were compared.


References

  • Baye, D. & Heenen P.H. 1973. A theoretical study of fast proton-atomic hydrogen scattering. J Phys B: At Mol. Phys. 6: 105–13. Bialynicki-Birula I., Mielnik B. & Plebanski J. 1969. Explicit solution of the continuous Baker–Campbell–Hausdorff problem and a new expression for the phase operator. Ann. Phys. 51: 187–200.
  • Blanes S. et al. 2009. The Magnus expansion and some of its applications, Physics Reports 470: 151-238.
  • Blanes S. et al. 2014. Time-averaging and exponential integrators for non-homogeneous linear IVPs and BVPs. Applied Numerical Mathematics 62: 875-894.
  • Blanes S. et al. 1998. Magnus and Fer expansions for matrix differential equations: the convergence problem. J. Phys. A 31: 259-268. Boyce W.E., DiPrima R.C., 2001. “Elementary Differential Equations and Boundary Value Problems”, John Wiley & Sons Inc, Singapore, pp. 200-205.
  • Cady W.A. 1974. Rotational spectral line broadening of OCS by noble gases. J. Chem. Phys. 60: 3318–23.
  • Castellano A. et al. 2014. Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids. Frattura ed Integrit`a Strutturale 29: 128-138.
  • D’Olivo J.C. & Oteo J.A. 1990. Magnus expansion and the two-neutrino oscillations in matter. Phys. Rev. D 42: 256–9.
  • Dahmen H.D., Scholz B. & Steiner F. 1982. Infrared dynamics of QED and the asymptotic behavior of the electron form factor. Nucl. Phys. B 202: 365–81.
  • De Silva Clarence W. 2000. Vibration: Fundamentals and Practice. CRC Pres, Boca Raton. Pp. 25.
  • Duleba I. 1997. Locally optimal motion planning of nonholonomic systems. Int. J. Robotic Systems 14: 767–788. Duleba I. 1998. On a computationally simple form of the generalized Campbell–Baker–Hausdorff–Dynkin formula. Systems Control Letters 34: 191–202.
  • Eichler J. 1977. Magnus approximation for K-shell ionization by heavy-ion impact. Phys. Rev. A 15: 1856–1862.
  • Evans W.A.B. 1968. On some application of Magnus expansion in nuclear magnetic resonance. Ann. Phys. 48: 72–93.
  • Fomenko A.T. & Chakon R.V. 1990. Recurrence formulas for homogeneous terms of a convergent series that represents a logarithm of a multiplicative integral on Lie groups. Funct. Anal. Appl. 1: 41–49.
  • Hyman H.A. 1985. Dipole Magnus approximation for electron-atom collisions: Excitation of the resonance transitions of Li, Na and K. Phys. Rev. A 31: 2142–2148.
  • Iserles A. & Nørsett S.P. 1997. Linear ODEs in Lie groups. DAMTP tech report 1997/NA9 University of Cambridge.
  • Iserles A. & Nørsett S.P. 1999. On the solution of linear differential equations in Lie groups. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 357: 983–1020.
  • Iserles A. et al. 2000. Lie-group Methods. Acta Numerica 9: 215-365.
  • Iserles A., Marthinsen A. & Nørsett S.P. 1999. On the implementation of the method of Magnus series for linear differential equations. BIT Numerical Mathematics Vol 39: 281-304.
  • Iserles A., Nørsett S.P. & Rasmussen A.F. 2001. Time-symmetry and high-order Magnus methods, Applied Numerical Mathematics. Volume 39: 379–401.
  • Lu Y.Y. 2005. A fourth-order Magnus scheme for Helmholtz equation. J. Comput. Appl. Math. 173: 247–258.
  • Lu Y.Y. 2006. Some techniques for computing propagation in optical waveguides. Comm. Comp. Phys. 1: 1056–1075. Lu Y.Y. 2007. A fourth order derivative-free operator marching method for Helmholtz equation in waveguides. J. Comput. Math.25: 719–729.
  • Magnus W. 1954. On the exponential solution of differential equations for a linear operator. Comm. Pure and Appl. Math. 7: 639-673. Mielnik B. & Plebanski J. 1970. Combinatorial approach to Baker–Campbell–Haussdorf exponents. Ann. Inst. Henri Poincare A 12: 215–254.
  • Milfeld K.F. &Wyatt R.E. 1983. Study extension and application of Floquet theory for quantum molecular systems in an oscillating field. Phys. Rev. A 27: 72–94.
  • Moan P.C. & Niesen J. 2008. Convergence of the Magnus series. Found. Comput. Maths 8: 291–301.
  • Murray R.M., Li Z. & Satry S.S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Pres, London.
  • Oteo J.A. & Ros J. 1991. The Magnus expansion for classical Hamiltonian systems. J. Phys. A: Math. Gen. 24: 5751–62.
  • Pechukas P. & Light J.C. 1966. On the exponential form of time-displacement operators in quantum mechanics. J. Chem. Phys. 44: 3897–912.
  • Robinson D.W. 1963. Multiple Coulomb excitations of deformed nuclei. Helv. Phys. Acta 36: 140–54.
  • Ross S.L. 1984. Differential Equations, John Wiley & Sons Inc, Singapore. Pp. 179-203.
  • Schek I., Jortner J. & Sage M.L. 1981. Application of the Magnus expansion for high-order multiphoton excitation. Chem. Phys. 59: 11–27.
  • Strichartz R.S. 1987. The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J. Func. Anal. 72: 320–345.
  • Wille U. & Hippler R. 1986. Mechanisms of inner-shell vacancy production in slow ion-atom collisions. Phys. Rep. 132: 129–260.
  • Wille U. 1981. Magnus expansion for rotationally induced inner-shell excitation. Phys. Lett. A 82: 389–392.
Year 2016, Volume: 4 Issue: 2, 90 - 112, 01.03.2016

Abstract

References

  • Baye, D. & Heenen P.H. 1973. A theoretical study of fast proton-atomic hydrogen scattering. J Phys B: At Mol. Phys. 6: 105–13. Bialynicki-Birula I., Mielnik B. & Plebanski J. 1969. Explicit solution of the continuous Baker–Campbell–Hausdorff problem and a new expression for the phase operator. Ann. Phys. 51: 187–200.
  • Blanes S. et al. 2009. The Magnus expansion and some of its applications, Physics Reports 470: 151-238.
  • Blanes S. et al. 2014. Time-averaging and exponential integrators for non-homogeneous linear IVPs and BVPs. Applied Numerical Mathematics 62: 875-894.
  • Blanes S. et al. 1998. Magnus and Fer expansions for matrix differential equations: the convergence problem. J. Phys. A 31: 259-268. Boyce W.E., DiPrima R.C., 2001. “Elementary Differential Equations and Boundary Value Problems”, John Wiley & Sons Inc, Singapore, pp. 200-205.
  • Cady W.A. 1974. Rotational spectral line broadening of OCS by noble gases. J. Chem. Phys. 60: 3318–23.
  • Castellano A. et al. 2014. Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids. Frattura ed Integrit`a Strutturale 29: 128-138.
  • D’Olivo J.C. & Oteo J.A. 1990. Magnus expansion and the two-neutrino oscillations in matter. Phys. Rev. D 42: 256–9.
  • Dahmen H.D., Scholz B. & Steiner F. 1982. Infrared dynamics of QED and the asymptotic behavior of the electron form factor. Nucl. Phys. B 202: 365–81.
  • De Silva Clarence W. 2000. Vibration: Fundamentals and Practice. CRC Pres, Boca Raton. Pp. 25.
  • Duleba I. 1997. Locally optimal motion planning of nonholonomic systems. Int. J. Robotic Systems 14: 767–788. Duleba I. 1998. On a computationally simple form of the generalized Campbell–Baker–Hausdorff–Dynkin formula. Systems Control Letters 34: 191–202.
  • Eichler J. 1977. Magnus approximation for K-shell ionization by heavy-ion impact. Phys. Rev. A 15: 1856–1862.
  • Evans W.A.B. 1968. On some application of Magnus expansion in nuclear magnetic resonance. Ann. Phys. 48: 72–93.
  • Fomenko A.T. & Chakon R.V. 1990. Recurrence formulas for homogeneous terms of a convergent series that represents a logarithm of a multiplicative integral on Lie groups. Funct. Anal. Appl. 1: 41–49.
  • Hyman H.A. 1985. Dipole Magnus approximation for electron-atom collisions: Excitation of the resonance transitions of Li, Na and K. Phys. Rev. A 31: 2142–2148.
  • Iserles A. & Nørsett S.P. 1997. Linear ODEs in Lie groups. DAMTP tech report 1997/NA9 University of Cambridge.
  • Iserles A. & Nørsett S.P. 1999. On the solution of linear differential equations in Lie groups. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 357: 983–1020.
  • Iserles A. et al. 2000. Lie-group Methods. Acta Numerica 9: 215-365.
  • Iserles A., Marthinsen A. & Nørsett S.P. 1999. On the implementation of the method of Magnus series for linear differential equations. BIT Numerical Mathematics Vol 39: 281-304.
  • Iserles A., Nørsett S.P. & Rasmussen A.F. 2001. Time-symmetry and high-order Magnus methods, Applied Numerical Mathematics. Volume 39: 379–401.
  • Lu Y.Y. 2005. A fourth-order Magnus scheme for Helmholtz equation. J. Comput. Appl. Math. 173: 247–258.
  • Lu Y.Y. 2006. Some techniques for computing propagation in optical waveguides. Comm. Comp. Phys. 1: 1056–1075. Lu Y.Y. 2007. A fourth order derivative-free operator marching method for Helmholtz equation in waveguides. J. Comput. Math.25: 719–729.
  • Magnus W. 1954. On the exponential solution of differential equations for a linear operator. Comm. Pure and Appl. Math. 7: 639-673. Mielnik B. & Plebanski J. 1970. Combinatorial approach to Baker–Campbell–Haussdorf exponents. Ann. Inst. Henri Poincare A 12: 215–254.
  • Milfeld K.F. &Wyatt R.E. 1983. Study extension and application of Floquet theory for quantum molecular systems in an oscillating field. Phys. Rev. A 27: 72–94.
  • Moan P.C. & Niesen J. 2008. Convergence of the Magnus series. Found. Comput. Maths 8: 291–301.
  • Murray R.M., Li Z. & Satry S.S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Pres, London.
  • Oteo J.A. & Ros J. 1991. The Magnus expansion for classical Hamiltonian systems. J. Phys. A: Math. Gen. 24: 5751–62.
  • Pechukas P. & Light J.C. 1966. On the exponential form of time-displacement operators in quantum mechanics. J. Chem. Phys. 44: 3897–912.
  • Robinson D.W. 1963. Multiple Coulomb excitations of deformed nuclei. Helv. Phys. Acta 36: 140–54.
  • Ross S.L. 1984. Differential Equations, John Wiley & Sons Inc, Singapore. Pp. 179-203.
  • Schek I., Jortner J. & Sage M.L. 1981. Application of the Magnus expansion for high-order multiphoton excitation. Chem. Phys. 59: 11–27.
  • Strichartz R.S. 1987. The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J. Func. Anal. 72: 320–345.
  • Wille U. & Hippler R. 1986. Mechanisms of inner-shell vacancy production in slow ion-atom collisions. Phys. Rep. 132: 129–260.
  • Wille U. 1981. Magnus expansion for rotationally induced inner-shell excitation. Phys. Lett. A 82: 389–392.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Musa Basbuk This is me

Aytekin Eryilmaz This is me

Mehmet Tarik Atay This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Basbuk, M., Eryilmaz, A., & Atay, M. T. (2016). Vibration analysis of a mass on a spring by means of magnus expansion method. New Trends in Mathematical Sciences, 4(2), 90-112.
AMA Basbuk M, Eryilmaz A, Atay MT. Vibration analysis of a mass on a spring by means of magnus expansion method. New Trends in Mathematical Sciences. March 2016;4(2):90-112.
Chicago Basbuk, Musa, Aytekin Eryilmaz, and Mehmet Tarik Atay. “Vibration Analysis of a Mass on a Spring by Means of Magnus Expansion Method”. New Trends in Mathematical Sciences 4, no. 2 (March 2016): 90-112.
EndNote Basbuk M, Eryilmaz A, Atay MT (March 1, 2016) Vibration analysis of a mass on a spring by means of magnus expansion method. New Trends in Mathematical Sciences 4 2 90–112.
IEEE M. Basbuk, A. Eryilmaz, and M. T. Atay, “Vibration analysis of a mass on a spring by means of magnus expansion method”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 90–112, 2016.
ISNAD Basbuk, Musa et al. “Vibration Analysis of a Mass on a Spring by Means of Magnus Expansion Method”. New Trends in Mathematical Sciences 4/2 (March 2016), 90-112.
JAMA Basbuk M, Eryilmaz A, Atay MT. Vibration analysis of a mass on a spring by means of magnus expansion method. New Trends in Mathematical Sciences. 2016;4:90–112.
MLA Basbuk, Musa et al. “Vibration Analysis of a Mass on a Spring by Means of Magnus Expansion Method”. New Trends in Mathematical Sciences, vol. 4, no. 2, 2016, pp. 90-112.
Vancouver Basbuk M, Eryilmaz A, Atay MT. Vibration analysis of a mass on a spring by means of magnus expansion method. New Trends in Mathematical Sciences. 2016;4(2):90-112.