Research Article
BibTex RIS Cite

On defining soft spaces by weak soft neighborhood systems

Year 2016, Volume: 4 Issue: 2, 113 - 124, 01.03.2016

Abstract

In the present paper, we define the concepts of weak soft neighborhood space, soft $w^{s}( \widetilde{\varphi },\widetilde{\varphi }^{^{\prime
}}) -continuous$, soft $w^{s}-continuous$ and soft $w^{s^{\ast }}-continuous$ on weak soft neighborhood spaces. Finally, we introduce their
basic properties and some examples.

References

  • Aktaş H. and Cağman N., Soft sets and soft group, Information Science 177 (2007) 2726-2735. Bayramov S., Gunduz (Aras) C. and Demirci N., A new approach to inverse and direct systems of soft topological spaces, Maejo International Journal of Science and Technology, 10(01) (2016) 51-65.
  • Bayramov S. and Gunduz (Aras) C., Soft locally compact spaces and soft paracompact spaces, Journal of Mathematics and System Science, 3 (2013) 122-130.
  • Csaszar A., Generalized topology, generalized continuity, Acta. Math. Hungar. 96 (2002) 351-357.
  • Cağman N., Karatao S. and Enginoğlu S., Soft topology, Comput. Math. Appl. (2011) 351-358.
  • Gunduz A. C., Sonmez A. and C¸ akallı H., On soft Mappings, (to appear).
  • Maji P. K., Bismas R. and Roy A. R., Soft Set Theory, Comput. Math. Appl. 45 (2003) 555-562.
  • Min W. K., On weak neighborhood systems and spaces, Acta. Math. Hungar. 121 (3) (2008) 283-292.
  • Molodtsov D., Soft Set Theory-First Results, Comput. Math. Appl.37 (1999) 19-31.
  • Ozturk T. Y. and Bayramov S., Soft mapping spaces, The Scientific World Journal, Article ID 307292, (2014) 8p.
  • Shabir M. and Naz M., On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786-1799.
  • Shabir M. and Bashir A., Some properties of soft topological spaces, Comput. Math. Appl. 62 (2011) 4058-4067.
  • Sahin R. and Küçük A., Soft Filters and Their Convergence Properties, Annals of Fuzzy Mathematics and Informatics 6(3) (2013) 529-543.
  • Sahin R., Soft compactification of soft topological spaces: Soft star topological spaces, Annals of Fuzzy Mathematics and Informatics 10(2) (2015) 447-464.
  • Thomas J. and John J. S., On soft generalized topological spaces, Journ. of New Results in Sci. 4 (2014) 01-15.
Year 2016, Volume: 4 Issue: 2, 113 - 124, 01.03.2016

Abstract

References

  • Aktaş H. and Cağman N., Soft sets and soft group, Information Science 177 (2007) 2726-2735. Bayramov S., Gunduz (Aras) C. and Demirci N., A new approach to inverse and direct systems of soft topological spaces, Maejo International Journal of Science and Technology, 10(01) (2016) 51-65.
  • Bayramov S. and Gunduz (Aras) C., Soft locally compact spaces and soft paracompact spaces, Journal of Mathematics and System Science, 3 (2013) 122-130.
  • Csaszar A., Generalized topology, generalized continuity, Acta. Math. Hungar. 96 (2002) 351-357.
  • Cağman N., Karatao S. and Enginoğlu S., Soft topology, Comput. Math. Appl. (2011) 351-358.
  • Gunduz A. C., Sonmez A. and C¸ akallı H., On soft Mappings, (to appear).
  • Maji P. K., Bismas R. and Roy A. R., Soft Set Theory, Comput. Math. Appl. 45 (2003) 555-562.
  • Min W. K., On weak neighborhood systems and spaces, Acta. Math. Hungar. 121 (3) (2008) 283-292.
  • Molodtsov D., Soft Set Theory-First Results, Comput. Math. Appl.37 (1999) 19-31.
  • Ozturk T. Y. and Bayramov S., Soft mapping spaces, The Scientific World Journal, Article ID 307292, (2014) 8p.
  • Shabir M. and Naz M., On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786-1799.
  • Shabir M. and Bashir A., Some properties of soft topological spaces, Comput. Math. Appl. 62 (2011) 4058-4067.
  • Sahin R. and Küçük A., Soft Filters and Their Convergence Properties, Annals of Fuzzy Mathematics and Informatics 6(3) (2013) 529-543.
  • Sahin R., Soft compactification of soft topological spaces: Soft star topological spaces, Annals of Fuzzy Mathematics and Informatics 10(2) (2015) 447-464.
  • Thomas J. and John J. S., On soft generalized topological spaces, Journ. of New Results in Sci. 4 (2014) 01-15.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Taha Yasin Ozturk

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Ozturk, T. Y. (2016). On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences, 4(2), 113-124.
AMA Ozturk TY. On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences. March 2016;4(2):113-124.
Chicago Ozturk, Taha Yasin. “On Defining Soft Spaces by Weak Soft Neighborhood Systems”. New Trends in Mathematical Sciences 4, no. 2 (March 2016): 113-24.
EndNote Ozturk TY (March 1, 2016) On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences 4 2 113–124.
IEEE T. Y. Ozturk, “On defining soft spaces by weak soft neighborhood systems”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 113–124, 2016.
ISNAD Ozturk, Taha Yasin. “On Defining Soft Spaces by Weak Soft Neighborhood Systems”. New Trends in Mathematical Sciences 4/2 (March 2016), 113-124.
JAMA Ozturk TY. On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences. 2016;4:113–124.
MLA Ozturk, Taha Yasin. “On Defining Soft Spaces by Weak Soft Neighborhood Systems”. New Trends in Mathematical Sciences, vol. 4, no. 2, 2016, pp. 113-24.
Vancouver Ozturk TY. On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences. 2016;4(2):113-24.