Research Article
BibTex RIS Cite

Intuitionistic fuzzy Zweier I-convergent double sequence spaces

Year 2016, Volume: 4 Issue: 2, 240 - 247, 01.03.2016

Abstract




Saadati
and Park [19] introduced intuitionistic fuzzy normed spaces. In light of these
developments, intuitionistic fuzzy analogues of many concepts in classical
analysis were studied by many authers. In this article we introduce the
intuitionistic fuzzy Zweier
-convergent double sequence spaces  and  and study the fuzzy topology on the
said spaces. Ideal, filter, double
-convergence, intuitionistic fuzzy normed spaces.




References

  • B. Altay, F. Başar, and Mursaleen, On the Euler sequence space which include the spaces l_p and l_∞, Inform. Sci., 76(10), pp. 1450-1462 (2006).
  • F. Başar, and B. Altay, On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainion math. J. 55(2003).
  • L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model, 128, 27-33(2000).
  • H. Fast, Sur la convergence statistique, Colloq. Math.,2, 241-244(1951).
  • A. L. Fradkov, R. J. Evans, Control of chaos: Methods of applications in engineering, Chaos, solution and Fractals 29 33-56(2005).
  • R. Giles, A computer program for fuzzy reasoning, Fuzzy sets and systems 4 221-234 (1980).
  • L. Hong, J. Q. Sun, Bifurcations of fuzzy non-linear dynamical systems, Commun. Nonlinear Sci.Numer. Simul, 1 1-12 (2006).
  • V. A. Khan, K. Ebadullah and Yasmeen, On Zweier I-convergent sequence spaces, Proyecciones Journal of Mathematics Vol.(3)(33)259-276 (2014).
  • A. Khan and Nazneen khan, On Zweier I-convergent Double Sequence Spaces, Filomat,( Accepted).
  • V. A. Khan, K. Ebadullah, Intuitionistic fuzzy zweier I-convergent sequence spaces, Func. Anal. TMA 1, 1-7 (2015).
  • P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Analysis Exchange 26, No. 2, 669-686 (2000).
  • P. Das, P. Kostyrko, W. Wilczynski, P. Malik, I and I^*- convergence of double sequences, Math. Slovaca 58 605-620 (2008).
  • E. Malkowsky, Recent results in the theory of matrix transformation in sequence spaces, Math. Vesnik,(49) 187-196(1997).
  • M. Mursaleen, Osama H. H. Edely, statistical convergence of double sequences, J. Math. Anal. Appl. 288 223-231(2003).
  • M. Mursaleen, Q.M.D. Lohni, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos, solution and Fractals 42, 331-344(2009).
  • A. Nabiev, S. Pehlivan, M. Gürdal, On I- Cauchy sequence, Taiwanese J. Math. 11(2) 569-576(2007).
  • P. N. Ng and P.Y. Lee, Ceaaro sequence spaces of non-absolute type, Comment. Math.Pracc. Math.20(2) 429-433(1978).
  • J. H. Park, Intuitionistic fuzzy matric space, Chaos, solution and Fractals (22) 1039-46(2004).
  • Reza Saadati, Jin Han Park, On the Intuitionistic Fuzzy Topological spaces, Chaos, solitons and Fractals, 27 331-344 (2006).
  • E. Savaş, M. Mursaleen, On statistical convergent double sequences of fuzzy numbers, Inform. Sci. 162 183-192(2004).
  • M. Sengonül, On the Zweier sequence space, Demonstratio Mathematica, Vol. XL No. (1) 181-‘96(2007).
  • C. S. Wang, On No ̈rlund sequence spaces Tamkang J. Math. (9) 269-274(1978).
  • T. S ̆ala't, B. C. Tripathy and M. Ziman, On some properties of I-convergence, Tatra Mt. math. Publ., 28, 279-286(2004).
  • L. A. Zadeh, Fuzzy Sets , Information and Control, 8, 338-353 (1965).
Year 2016, Volume: 4 Issue: 2, 240 - 247, 01.03.2016

Abstract

References

  • B. Altay, F. Başar, and Mursaleen, On the Euler sequence space which include the spaces l_p and l_∞, Inform. Sci., 76(10), pp. 1450-1462 (2006).
  • F. Başar, and B. Altay, On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainion math. J. 55(2003).
  • L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model, 128, 27-33(2000).
  • H. Fast, Sur la convergence statistique, Colloq. Math.,2, 241-244(1951).
  • A. L. Fradkov, R. J. Evans, Control of chaos: Methods of applications in engineering, Chaos, solution and Fractals 29 33-56(2005).
  • R. Giles, A computer program for fuzzy reasoning, Fuzzy sets and systems 4 221-234 (1980).
  • L. Hong, J. Q. Sun, Bifurcations of fuzzy non-linear dynamical systems, Commun. Nonlinear Sci.Numer. Simul, 1 1-12 (2006).
  • V. A. Khan, K. Ebadullah and Yasmeen, On Zweier I-convergent sequence spaces, Proyecciones Journal of Mathematics Vol.(3)(33)259-276 (2014).
  • A. Khan and Nazneen khan, On Zweier I-convergent Double Sequence Spaces, Filomat,( Accepted).
  • V. A. Khan, K. Ebadullah, Intuitionistic fuzzy zweier I-convergent sequence spaces, Func. Anal. TMA 1, 1-7 (2015).
  • P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Analysis Exchange 26, No. 2, 669-686 (2000).
  • P. Das, P. Kostyrko, W. Wilczynski, P. Malik, I and I^*- convergence of double sequences, Math. Slovaca 58 605-620 (2008).
  • E. Malkowsky, Recent results in the theory of matrix transformation in sequence spaces, Math. Vesnik,(49) 187-196(1997).
  • M. Mursaleen, Osama H. H. Edely, statistical convergence of double sequences, J. Math. Anal. Appl. 288 223-231(2003).
  • M. Mursaleen, Q.M.D. Lohni, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos, solution and Fractals 42, 331-344(2009).
  • A. Nabiev, S. Pehlivan, M. Gürdal, On I- Cauchy sequence, Taiwanese J. Math. 11(2) 569-576(2007).
  • P. N. Ng and P.Y. Lee, Ceaaro sequence spaces of non-absolute type, Comment. Math.Pracc. Math.20(2) 429-433(1978).
  • J. H. Park, Intuitionistic fuzzy matric space, Chaos, solution and Fractals (22) 1039-46(2004).
  • Reza Saadati, Jin Han Park, On the Intuitionistic Fuzzy Topological spaces, Chaos, solitons and Fractals, 27 331-344 (2006).
  • E. Savaş, M. Mursaleen, On statistical convergent double sequences of fuzzy numbers, Inform. Sci. 162 183-192(2004).
  • M. Sengonül, On the Zweier sequence space, Demonstratio Mathematica, Vol. XL No. (1) 181-‘96(2007).
  • C. S. Wang, On No ̈rlund sequence spaces Tamkang J. Math. (9) 269-274(1978).
  • T. S ̆ala't, B. C. Tripathy and M. Ziman, On some properties of I-convergence, Tatra Mt. math. Publ., 28, 279-286(2004).
  • L. A. Zadeh, Fuzzy Sets , Information and Control, 8, 338-353 (1965).
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Vakeel A. Khan

Yasmeen Yasmeen This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Khan, V. A., & Yasmeen, Y. (2016). Intuitionistic fuzzy Zweier I-convergent double sequence spaces. New Trends in Mathematical Sciences, 4(2), 240-247.
AMA Khan VA, Yasmeen Y. Intuitionistic fuzzy Zweier I-convergent double sequence spaces. New Trends in Mathematical Sciences. March 2016;4(2):240-247.
Chicago Khan, Vakeel A., and Yasmeen Yasmeen. “Intuitionistic Fuzzy Zweier I-Convergent Double Sequence Spaces”. New Trends in Mathematical Sciences 4, no. 2 (March 2016): 240-47.
EndNote Khan VA, Yasmeen Y (March 1, 2016) Intuitionistic fuzzy Zweier I-convergent double sequence spaces. New Trends in Mathematical Sciences 4 2 240–247.
IEEE V. A. Khan and Y. Yasmeen, “Intuitionistic fuzzy Zweier I-convergent double sequence spaces”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 240–247, 2016.
ISNAD Khan, Vakeel A. - Yasmeen, Yasmeen. “Intuitionistic Fuzzy Zweier I-Convergent Double Sequence Spaces”. New Trends in Mathematical Sciences 4/2 (March 2016), 240-247.
JAMA Khan VA, Yasmeen Y. Intuitionistic fuzzy Zweier I-convergent double sequence spaces. New Trends in Mathematical Sciences. 2016;4:240–247.
MLA Khan, Vakeel A. and Yasmeen Yasmeen. “Intuitionistic Fuzzy Zweier I-Convergent Double Sequence Spaces”. New Trends in Mathematical Sciences, vol. 4, no. 2, 2016, pp. 240-7.
Vancouver Khan VA, Yasmeen Y. Intuitionistic fuzzy Zweier I-convergent double sequence spaces. New Trends in Mathematical Sciences. 2016;4(2):240-7.