Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 3, 99 - 104, 30.09.2016

Abstract

References

  • Ayyıldız, N., Çöken, A.C., Yücesan, A., A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4), 999-1018 (2007).
  • Ball, N. H., On Ovals, American Mathematical Monthly, 37(7), 348-353 (1930).
  • Barbier, E., Note sur le probleme de l’aiguille et le jeu du joint couvert. J. Math. Pures Appl., II. Ser. 5, 273-286 (1860).
  • Blaschke, W., Konvexe bereiche gegebener konstanter breite und kleinsten inhalts, Mathematische Annalen, B. 76(4), 504-513 (1915).
  • Blaschke, W., Einige Bemerkungen über Kurven und Flächen konstanter Breite. Ber. Verh. Sächs. Akad. Leipzig, 67, 290-297 (1915).
  • Blaschke, W., Differential Geometric and Geometrischke Grundlagen ven Einsteins Relativitasttheorie Dover, New York, (1945).
  • Hacısalihoğlu, H.H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Üniversitesi Fen-Edb. Fakültesi, (1983)
  • Euler, L., De Curvis Triangularibus, Acta Acad. Petropol., 3-30 (1778-1780).
  • Fujivara, M., On space curves of constant breadth, Tohoku Math., J., 5, 180-184 (1914).
  • Kocayiğit, H., Önder, M., Space curves of constant breadth in Minkowski 3-space, Annali di Matematica, 192(5), 805-814, (2013).
  • Kazaz, M., Önder, M., Kocayiğit, H., Spacelike curves of constant breadth in Minkowski 4-space, Int. Journal of Math. Analysis, 22(2) 1061-1068 (2008).
  • Köse, Ö., On space curves of constant breadth, Doğa Tr. J. Math., 10(1), 11-14, (1986).
  • Köse, Ö., Some Properties of Ovals and Curves of Constant Width in a Plane, Doğa Mat., 2 (8) 119-126 (1984).
  • Mağden, A., Köse, Ö., On the curves of constant breadth in E^4 space, Turkish J. Math., 21 (3) 277-284 (1997).
  • Mellish, A.P., Notes of Differential Geometry, Annals of Mathematics, 32(1), 181-190 (1931).
  • Önder, M., Kocayiğit, H., Candan, E., Differential Equations Characterizing Timelike and Spacelike Curves of Constant Breadth in Minkowski 3-Space E_1^3, J. Korean Math. Soc. 48 (4) 849-866 (2011).
  • Sezer, M., Differential equations characterizing space curves of constant breadth and a criterion for these curves, Turkish J. of Math. 13(2), 70-78 (1989).
  • Struik, D. J., Differential Geometry in the Large, Bull. Amer. Math. Soc., 37(2), 49-62 (1931).
  • Veldkamp, G.R., On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mech. Mach. Theory, 11(2), 141-156 (1976).
  • Yılmaz, S., Time-like Dual Curves of Constant Breadth in Dual Lorentzian Space, IBSU Scientific Journal, 2 (2), 129-136 (2008).

Dual Curves of Constant Breadth in Dual Euclidean Space D^3

Year 2016, Volume: 4 Issue: 3, 99 - 104, 30.09.2016

Abstract




In this paper, we study dual curves of constant
breadth in dual Euclidean Space
. We obtain the differential equations characterizing dual curves of
constant breadth in
 and we introduce some special cases
for these dual curves.




References

  • Ayyıldız, N., Çöken, A.C., Yücesan, A., A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4), 999-1018 (2007).
  • Ball, N. H., On Ovals, American Mathematical Monthly, 37(7), 348-353 (1930).
  • Barbier, E., Note sur le probleme de l’aiguille et le jeu du joint couvert. J. Math. Pures Appl., II. Ser. 5, 273-286 (1860).
  • Blaschke, W., Konvexe bereiche gegebener konstanter breite und kleinsten inhalts, Mathematische Annalen, B. 76(4), 504-513 (1915).
  • Blaschke, W., Einige Bemerkungen über Kurven und Flächen konstanter Breite. Ber. Verh. Sächs. Akad. Leipzig, 67, 290-297 (1915).
  • Blaschke, W., Differential Geometric and Geometrischke Grundlagen ven Einsteins Relativitasttheorie Dover, New York, (1945).
  • Hacısalihoğlu, H.H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Üniversitesi Fen-Edb. Fakültesi, (1983)
  • Euler, L., De Curvis Triangularibus, Acta Acad. Petropol., 3-30 (1778-1780).
  • Fujivara, M., On space curves of constant breadth, Tohoku Math., J., 5, 180-184 (1914).
  • Kocayiğit, H., Önder, M., Space curves of constant breadth in Minkowski 3-space, Annali di Matematica, 192(5), 805-814, (2013).
  • Kazaz, M., Önder, M., Kocayiğit, H., Spacelike curves of constant breadth in Minkowski 4-space, Int. Journal of Math. Analysis, 22(2) 1061-1068 (2008).
  • Köse, Ö., On space curves of constant breadth, Doğa Tr. J. Math., 10(1), 11-14, (1986).
  • Köse, Ö., Some Properties of Ovals and Curves of Constant Width in a Plane, Doğa Mat., 2 (8) 119-126 (1984).
  • Mağden, A., Köse, Ö., On the curves of constant breadth in E^4 space, Turkish J. Math., 21 (3) 277-284 (1997).
  • Mellish, A.P., Notes of Differential Geometry, Annals of Mathematics, 32(1), 181-190 (1931).
  • Önder, M., Kocayiğit, H., Candan, E., Differential Equations Characterizing Timelike and Spacelike Curves of Constant Breadth in Minkowski 3-Space E_1^3, J. Korean Math. Soc. 48 (4) 849-866 (2011).
  • Sezer, M., Differential equations characterizing space curves of constant breadth and a criterion for these curves, Turkish J. of Math. 13(2), 70-78 (1989).
  • Struik, D. J., Differential Geometry in the Large, Bull. Amer. Math. Soc., 37(2), 49-62 (1931).
  • Veldkamp, G.R., On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mech. Mach. Theory, 11(2), 141-156 (1976).
  • Yılmaz, S., Time-like Dual Curves of Constant Breadth in Dual Lorentzian Space, IBSU Scientific Journal, 2 (2), 129-136 (2008).
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Huseyin Kocayigit This is me

Nihal Erten This is me

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 3

Cite

APA Kocayigit, H., & Erten, N. (2016). Dual Curves of Constant Breadth in Dual Euclidean Space D^3. New Trends in Mathematical Sciences, 4(3), 99-104.
AMA Kocayigit H, Erten N. Dual Curves of Constant Breadth in Dual Euclidean Space D^3. New Trends in Mathematical Sciences. September 2016;4(3):99-104.
Chicago Kocayigit, Huseyin, and Nihal Erten. “Dual Curves of Constant Breadth in Dual Euclidean Space D^3”. New Trends in Mathematical Sciences 4, no. 3 (September 2016): 99-104.
EndNote Kocayigit H, Erten N (September 1, 2016) Dual Curves of Constant Breadth in Dual Euclidean Space D^3. New Trends in Mathematical Sciences 4 3 99–104.
IEEE H. Kocayigit and N. Erten, “Dual Curves of Constant Breadth in Dual Euclidean Space D^3”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 99–104, 2016.
ISNAD Kocayigit, Huseyin - Erten, Nihal. “Dual Curves of Constant Breadth in Dual Euclidean Space D^3”. New Trends in Mathematical Sciences 4/3 (September 2016), 99-104.
JAMA Kocayigit H, Erten N. Dual Curves of Constant Breadth in Dual Euclidean Space D^3. New Trends in Mathematical Sciences. 2016;4:99–104.
MLA Kocayigit, Huseyin and Nihal Erten. “Dual Curves of Constant Breadth in Dual Euclidean Space D^3”. New Trends in Mathematical Sciences, vol. 4, no. 3, 2016, pp. 99-104.
Vancouver Kocayigit H, Erten N. Dual Curves of Constant Breadth in Dual Euclidean Space D^3. New Trends in Mathematical Sciences. 2016;4(3):99-104.